論文の概要: Real-time Neural Woven Fabric Rendering
- arxiv url: http://arxiv.org/abs/2406.17782v1
- Date: Sat, 4 May 2024 06:14:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 06:21:45.769265
- Title: Real-time Neural Woven Fabric Rendering
- Title(参考訳): リアルタイム神経織物レンダリング
- Authors: Xiang Chen, Lu Wang, Beibei Wang,
- Abstract要約: 織物はリアルなレンダリングの応用に広く使われている。
リアルな織物をリアルタイムでレンダリングするのは 複雑な構造と光学的外観のため 困難です
異なる種類の織物を異なるスケールで表現する軽量ニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 14.607361649955116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Woven fabrics are widely used in applications of realistic rendering, where real-time capability is also essential. However, rendering realistic woven fabrics in real time is challenging due to their complex structure and optical appearance, which cause aliasing and noise without many samples. The core of this issue is a multi-scale representation of the fabric shading model, which allows for a fast range query. Some previous neural methods deal with the issue at the cost of training on each material, which limits their practicality. In this paper, we propose a lightweight neural network to represent different types of woven fabrics at different scales. Thanks to the regularity and repetitiveness of woven fabric patterns, our network can encode fabric patterns and parameters as a small latent vector, which is later interpreted by a small decoder, enabling the representation of different types of fabrics. By applying the pixel's footprint as input, our network achieves multi-scale representation. Moreover, our network is fast and occupies little storage because of its lightweight structure. As a result, our method achieves rendering and editing woven fabrics at nearly 60 frames per second on an RTX 3090, showing a quality close to the ground truth and being free from visible aliasing and noise.
- Abstract(参考訳): 織布はリアルなレンダリングの応用において広く使われており、リアルタイムの能力も不可欠である。
しかし、複雑な構造と光学的外観のため、現実的な織物をリアルタイムでレンダリングすることは困難であり、多くのサンプルを伴わずにエイリアスやノイズを引き起こす。
この問題の核心はファブリックシェーディングモデルのマルチスケール表現であり、高速レンジクエリを可能にする。
従来のニューラルメソッドでは、各素材のトレーニングコストでこの問題に対処し、実用性を制限していた。
本稿では,異なる種類の織物を異なるスケールで表現する軽量ニューラルネットワークを提案する。
織布パターンの規則性と反復性により,ネットワークは布のパターンやパラメータを小さな潜在ベクトルとしてエンコードすることができる。
画素のフットプリントを入力として適用することにより,ネットワークはマルチスケール表現を実現する。
さらに、私たちのネットワークは高速で、軽量な構造のため、ストレージがほとんどありません。
その結果,RTX 3090では,60fps近い織物のレンダリングと編集が可能となり,その品質は真実に近いものとなり,可視エイリアスやノイズを伴わないことがわかった。
関連論文リスト
- FabricDiffusion: High-Fidelity Texture Transfer for 3D Garments Generation from In-The-Wild Clothing Images [56.63824638417697]
ファブリックディフュージョン(FabricDiffusion)は、織物のテクスチャを1枚の衣服画像から任意の形状の3D衣服に転送する方法である。
FabricDiffusionは、テクスチャパターン、材料特性、詳細な印刷物やロゴを含む、単一の衣料品画像から様々な特徴を伝達できることを示す。
論文 参考訳(メタデータ) (2024-10-02T17:57:12Z) - NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
ニューラル放射場は、最先端のビュー合成品質を提供するが、レンダリングが遅くなる傾向がある。
本稿では,ほとんどの物体を表面としてレンダリングすることで,両表現の強みを生かしたHybridNeRFを提案する。
仮想現実分解能(2Kx2K)のリアルタイムフレームレート(少なくとも36FPS)を達成しながら、エラー率を15~30%改善する。
論文 参考訳(メタデータ) (2023-12-05T22:04:49Z) - Volume Feature Rendering for Fast Neural Radiance Field Reconstruction [11.05302598034426]
ニューラルレイディアンス場(NeRF)は、異なる位置と視点から撮影された多視点画像から現実的な新しいビューを合成することができる。
NeRFのレンダリングパイプラインでは、ニューラルネットワークはシーンを独立して表現したり、期待される色や密度のポイントのクエリ可能な特徴ベクトルを変換するために使用される。
提案手法では,まず,まず線の特徴ベクトルを描画し,次にニューラルネットワークにより最終画素色に変換する。
論文 参考訳(メタデータ) (2023-05-29T06:58:27Z) - Progressive Multi-scale Light Field Networks [14.050802766699084]
複数レベルの詳細で光電場を符号化するプログレッシブ・マルチスケール光電場ネットワークを提案する。
低レベルの詳細は、プログレッシブストリーミングとレンダリング時間の短縮を可能にする、ニューラルネットワークの重みを減らしてエンコードされる。
論文 参考訳(メタデータ) (2022-08-13T19:02:34Z) - RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis [104.53930611219654]
約2000の複雑なシーンからレンダリングされた300k画像からなる,新しいビュー合成のための大規模合成データセットを提案する。
データセットは、新しいビュー合成のための既存の合成データセットよりも桁違いに大きい。
高品質な3Dメッシュの4つのソースを使用して、私たちのデータセットのシーンは、カメラビュー、照明、形状、材料、テクスチャの難しいバリエーションを示します。
論文 参考訳(メタデータ) (2022-05-14T13:15:32Z) - SeamlessGAN: Self-Supervised Synthesis of Tileable Texture Maps [3.504542161036043]
単一入力例からタイル状テクスチャマップを自動生成できるSeamlessGANを提案する。
合成問題にのみ焦点をあてた既存の方法とは対照的に,本研究は合成性とタイル性の両方に同時に取り組む。
論文 参考訳(メタデータ) (2022-01-13T18:24:26Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
我々は、コンパクトで、光線に沿った統合放射率を直接予測する新しいニューラル光場表現を提案する。
提案手法は,Stanford Light Field データセットのような,高密度の前方向きデータセットの最先端品質を実現する。
論文 参考訳(メタデータ) (2021-12-02T18:59:51Z) - Neural Sparse Voxel Fields [151.20366604586403]
高速かつ高品質な自由視点レンダリングのためのニューラルシーン表現であるNeural Sparse Voxel Fields (NSVF)を紹介する。
NSVFは、各細胞の局所特性をモデル化するために、スパース・ボクセル・オクツリーで組織された、ボクセルに結合した暗黙のフィールドのセットを定義する。
提案手法は, 高い品質を達成しつつ, 推論時の最先端技術(NeRF(Mildenhall et al., 2020))よりも10倍以上高速である。
論文 参考訳(メタデータ) (2020-07-22T17:51:31Z) - On Demand Solid Texture Synthesis Using Deep 3D Networks [3.1542695050861544]
本稿では,ディープラーニングフレームワークに基づくオンデマンドテクスチャ合成のための新しいアプローチについて述べる。
任意の大きさの固形テクスチャのコヒーレント部分を合成するために、生成ネットワークを訓練する。
合成されたボリュームは、少なくとも最先端のパッチベースのアプローチと同等の視覚的結果が得られる。
論文 参考訳(メタデータ) (2020-01-13T20:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。