論文の概要: NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections
- arxiv url: http://arxiv.org/abs/2405.14871v1
- Date: Thu, 23 May 2024 17:59:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 13:17:34.765239
- Title: NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections
- Title(参考訳): NeRF-Casting:一貫した反射によるビュー依存外観の改善
- Authors: Dor Verbin, Pratul P. Srinivasan, Peter Hedman, Ben Mildenhall, Benjamin Attal, Richard Szeliski, Jonathan T. Barron,
- Abstract要約: 最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
- 参考スコア(独自算出の注目度): 57.63028964831785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRFs) typically struggle to reconstruct and render highly specular objects, whose appearance varies quickly with changes in viewpoint. Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content. Moreover, these techniques rely on large computationally-expensive neural networks to model outgoing radiance, which severely limits optimization and rendering speed. We address these issues with an approach based on ray tracing: instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts reflection rays from these points and traces them through the NeRF representation to render feature vectors which are decoded into color using a small inexpensive network. We demonstrate that our model outperforms prior methods for view synthesis of scenes containing shiny objects, and that it is the only existing NeRF method that can synthesize photorealistic specular appearance and reflections in real-world scenes, while requiring comparable optimization time to current state-of-the-art view synthesis models.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)は一般的に、視界の変化とともにすぐに現れる、非常に特異な物体の再構成とレンダリングに苦慮している。
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
さらに、これらの手法は、最適化とレンダリング速度を著しく制限する外界放射率をモデル化するために、大きな計算能力を持つニューラルネットワークに依存している。
我々は、これらの問題に、レイトレーシングに基づくアプローチで対処する: 各カメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、モデルがこれらの点からの反射線をキャストし、NeRF表現を通してそれらをトレースし、小さな安価なネットワークを使用して色にデコードされた特徴ベクトルを描画する。
本モデルは,光沢のあるオブジェクトを含むシーンのビュー合成において,先行した手法よりも優れており,実際のシーンにおける光リアルな外観や反射を合成できる唯一のNeRF法であり,現状のビュー合成モデルに匹敵する最適化時間を必要とすることを実証する。
関連論文リスト
- HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
ニューラル放射場は、最先端のビュー合成品質を提供するが、レンダリングが遅くなる傾向がある。
本稿では,ほとんどの物体を表面としてレンダリングすることで,両表現の強みを生かしたHybridNeRFを提案する。
仮想現実分解能(2Kx2K)のリアルタイムフレームレート(少なくとも36FPS)を達成しながら、エラー率を15~30%改善する。
論文 参考訳(メタデータ) (2023-12-05T22:04:49Z) - FlipNeRF: Flipped Reflection Rays for Few-shot Novel View Synthesis [30.25904672829623]
FlipNeRFは,提案したフレキシブルリフレクション線を利用して,数発の新規ビュー合成のための新しい正規化手法である。
FlipNeRFは、異なるシーン構造全体にわたって効果的に浮かぶアーティファクトを削減し、より信頼性の高いアウトプットを見積もることができる。
論文 参考訳(メタデータ) (2023-06-30T15:11:00Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
本研究では,NeRFを高効率メッシュベースニューラル表現に蒸留・焼成する手法を提案する。
提案手法の有効性と優位性を,各種標準データセットの広範な実験を通じて実証する。
論文 参考訳(メタデータ) (2023-04-20T17:59:52Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z) - Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance
Fields [40.72851892972173]
本稿では,NeRFの視界依存放射のパラメータ化を反射放射率と構造表現に置き換えるRef-NeRFを提案する。
また,本モデルの内部的放射率表現は,シーン編集に有用であることを示す。
論文 参考訳(メタデータ) (2021-12-07T18:58:37Z) - RegNeRF: Regularizing Neural Radiance Fields for View Synthesis from
Sparse Inputs [79.00855490550367]
我々は,多くの入力ビューが利用可能である場合,NeRFは見えない視点のフォトリアリスティックレンダリングを生成することができることを示す。
我々は、未観測の視点からレンダリングされたパッチの幾何学と外観を規則化することで、この問題に対処する。
我々のモデルは、1つのシーンで最適化する他の方法よりも、大規模なマルチビューデータセットで広範囲に事前訓練された条件付きモデルよりも優れています。
論文 参考訳(メタデータ) (2021-12-01T18:59:46Z) - NeRFReN: Neural Radiance Fields with Reflections [16.28256369376256]
我々は、NeRF上に構築されたNeRFReNを導入し、リフレクションのあるシーンをモデル化する。
本稿では,シーンを伝送・反射するコンポーネントに分割し,2つのコンポーネントを別個の神経放射場でモデル化することを提案する。
様々な自撮りシーンの実験により,本手法は高品質な新規ビュー合成と物理音響深度推定を達成できることが示されている。
論文 参考訳(メタデータ) (2021-11-30T09:36:00Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
MVSNeRFは、ビュー合成のための神経放射場を効率的に再構築できる新しいニューラルレンダリング手法である。
高密度にキャプチャされた画像に対して,シーン毎の最適化を考慮に入れたニューラルネットワークの先行研究とは異なり,高速ネットワーク推論により,近傍の3つの入力ビューのみからラミアンスフィールドを再構成できる汎用ディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T13:15:23Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
Neural RadianceField(NeRF)を「反転」してメッシュフリーポーズ推定を行うフレームワークiNeRFを紹介します。
NeRFはビュー合成のタスクに極めて有効であることが示されている。
論文 参考訳(メタデータ) (2020-12-10T18:36:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。