Temporal Prototype-Aware Learning for Active Voltage Control on Power Distribution Networks
- URL: http://arxiv.org/abs/2406.17818v1
- Date: Tue, 25 Jun 2024 08:07:00 GMT
- Title: Temporal Prototype-Aware Learning for Active Voltage Control on Power Distribution Networks
- Authors: Feiyang Xu, Shunyu Liu, Yunpeng Qing, Yihe Zhou, Yuwen Wang, Mingli Song,
- Abstract summary: Active Voltage Control (AVC) on the Power Distribution Networks (PDNs) aims to stabilize the voltage levels to ensure efficient and reliable operation of power systems.
We propose a novel temporal prototype-aware learning method, abbreviated as TPA, to learn time-adaptive dependencies under short-term training trajectories.
- Score: 28.630650305620197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active Voltage Control (AVC) on the Power Distribution Networks (PDNs) aims to stabilize the voltage levels to ensure efficient and reliable operation of power systems. With the increasing integration of distributed energy resources, recent efforts have explored employing multi-agent reinforcement learning (MARL) techniques to realize effective AVC. Existing methods mainly focus on the acquisition of short-term AVC strategies, i.e., only learning AVC within the short-term training trajectories of a singular diurnal cycle. However, due to the dynamic nature of load demands and renewable energy, the operation states of real-world PDNs may exhibit significant distribution shifts across varying timescales (e.g., daily and seasonal changes). This can render those short-term strategies suboptimal or even obsolete when performing continuous AVC over extended periods. In this paper, we propose a novel temporal prototype-aware learning method, abbreviated as TPA, to learn time-adaptive AVC under short-term training trajectories. At the heart of TPA are two complementary components, namely multi-scale dynamic encoder and temporal prototype-aware policy, that can be readily incorporated into various MARL methods. The former component integrates a stacked transformer network to learn underlying temporal dependencies at different timescales of the PDNs, while the latter implements a learnable prototype matching mechanism to construct a dedicated AVC policy that can dynamically adapt to the evolving operation states. Experimental results on the AVC benchmark with different PDN sizes demonstrate that the proposed TPA surpasses the state-of-the-art counterparts not only in terms of control performance but also by offering model transferability. Our code is available at https://github.com/Canyizl/TPA-for-AVC.
Related papers
- iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios [7.772337176239137]
Post-hoc explanation techniques such as the well-established partial dependence plot ( PDP) are used in explainable artificial intelligence (XAI)
We propose a novel model-agnostic XAI framework that extends on the PDP to extract time-dependent feature effects in non-stationary learning environments.
arXiv Detail & Related papers (2023-06-13T13:56:56Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Dynamic Interpretable Change Point Detection [9.879634139205569]
TiVaCPD is an approach that uses a Time-Varying Graphical Lasso to identify changes in correlation patterns between multidimensional features over time.
We evaluate the performance of TiVaCPD in identifying and characterizing various types of CPs and show that our method outperforms current state-of-the-art methods in real-world CPD datasets.
arXiv Detail & Related papers (2022-11-08T04:04:56Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - Layer Pruning on Demand with Intermediate CTC [50.509073206630994]
We present a training and pruning method for ASR based on the connectionist temporal classification (CTC)
We show that a Transformer-CTC model can be pruned in various depth on demand, improving real-time factor from 0.005 to 0.002 on GPU.
arXiv Detail & Related papers (2021-06-17T02:40:18Z) - Bi-level Off-policy Reinforcement Learning for Volt/VAR Control
Involving Continuous and Discrete Devices [2.079959811127612]
In Volt/Var control, both slow timescale discrete devices (STDDs) and fast timescale continuous devices (FTCDs) are involved.
Traditional optimization methods are heavily based on accurate models of the system, but sometimes impractical because of their unaffordable effort on modelling.
In this paper, a novel bi-level off-policy reinforcement learning (RL) algorithm is proposed to solve this problem in a model-free manner.
arXiv Detail & Related papers (2021-04-13T02:22:43Z) - Efficient Transformers in Reinforcement Learning using Actor-Learner
Distillation [91.05073136215886]
"Actor-Learner Distillation" transfers learning progress from a large capacity learner model to a small capacity actor model.
We demonstrate in several challenging memory environments that using Actor-Learner Distillation recovers the clear sample-efficiency gains of the transformer learner model.
arXiv Detail & Related papers (2021-04-04T17:56:34Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - An Intelligent Control Strategy for buck DC-DC Converter via Deep
Reinforcement Learning [1.4502611532302039]
An innovative intelligent control strategy for buck DC-DC converter with constant power loads (CPLs) is constructed for the first time.
A Markov Decision Process (MDP) model and the deep Q network (DQN) algorithm are defined for DC-DC converter.
A model-free based deep reinforcement learning (DRL) control strategy is appropriately designed to adjust the agent-environment interaction.
arXiv Detail & Related papers (2020-08-11T06:38:53Z) - Online Multi-agent Reinforcement Learning for Decentralized
Inverter-based Volt-VAR Control [3.260913246106564]
The distributed Volt/Var control (VVC) methods have been widely studied for active distribution networks(ADNs)
We propose an online multi-agent reinforcement learning and decentralized control framework (OLDC) for VVC.
arXiv Detail & Related papers (2020-06-23T09:03:46Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.