論文の概要: Univariate Skeleton Prediction in Multivariate Systems Using Transformers
- arxiv url: http://arxiv.org/abs/2406.17834v1
- Date: Tue, 25 Jun 2024 15:07:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 17:36:24.604588
- Title: Univariate Skeleton Prediction in Multivariate Systems Using Transformers
- Title(参考訳): 変圧器を用いた多変量系の一様骨格予測
- Authors: Giorgio Morales, John W. Sheppard,
- Abstract要約: 本稿では,各変数がシステムの応答にどのように影響するかを説明することを目的とした,一変量シンボリックスケルトンを生成する説明可能なニューラルSR法を提案する。
実験により,本手法は基礎となる機能に適合する骨格表現を学習し,GPベースと2つのニューラルSR法より優れていることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symbolic regression (SR) methods attempt to learn mathematical expressions that approximate the behavior of an observed system. However, when dealing with multivariate systems, they often fail to identify the functional form that explains the relationship between each variable and the system's response. To begin to address this, we propose an explainable neural SR method that generates univariate symbolic skeletons that aim to explain how each variable influences the system's response. By analyzing multiple sets of data generated artificially, where one input variable varies while others are fixed, relationships are modeled separately for each input variable. The response of such artificial data sets is estimated using a regression neural network (NN). Finally, the multiple sets of input-response pairs are processed by a pre-trained Multi-Set Transformer that solves a problem we termed Multi-Set Skeleton Prediction and outputs a univariate symbolic skeleton. Thus, such skeletons represent explanations of the function approximated by the regression NN. Experimental results demonstrate that this method learns skeleton expressions matching the underlying functions and outperforms two GP-based and two neural SR methods.
- Abstract(参考訳): シンボリック回帰(SR)法は、観測されたシステムの振舞いを近似する数学的表現を学習しようとする。
しかし、多変量系を扱う場合、各変数とシステムの応答の関係を説明する機能形式を識別できないことが多い。
この問題に対処するために、各変数がシステムの応答にどのように影響するかを説明することを目的とした、一変量シンボリックスケルトンを生成する説明可能なニューラルSR法を提案する。
1つの入力変数が変化し、他の入力変数が固定された複数のデータ集合を人工的に解析することにより、各入力変数に対する関係を別々にモデル化する。
このような人工データセットの応答を回帰ニューラルネットワーク(NN)を用いて推定する。
最後に、入力-応答対の複数セットを事前学習したマルチセット変換器で処理し、マルチセットスケルトン予測(Multi-Set Skeleton Prediction)と呼ばれる問題を解き、一変量シンボリックスケルトンを出力する。
したがって、そのようなスケルトンは回帰NNによって近似された関数の説明を表す。
実験により,本手法は基礎となる機能に適合する骨格表現を学習し,GPベースと2つのニューラルSR法より優れていることが示された。
関連論文リスト
- PROSE: Predicting Operators and Symbolic Expressions using Multimodal
Transformers [5.263113622394007]
我々は微分方程式を予測するための新しいニューラルネットワークフレームワークを開発する。
変換器構造と特徴融合手法を用いることで,様々なパラメトリック微分方程式に対する解演算子の集合を同時に埋め込むことができる。
ネットワークはデータのノイズやシンボル表現のエラーを処理でき、ノイズの多い数値、モデルの不特定性、誤った追加や用語の削除などが含まれる。
論文 参考訳(メタデータ) (2023-09-28T19:46:07Z) - Unsupervised Learning of Invariance Transformations [105.54048699217668]
近似グラフ自己同型を見つけるためのアルゴリズムフレームワークを開発する。
重み付きグラフにおける近似自己同型を見つけるために、このフレームワークをどのように利用できるかについて議論する。
論文 参考訳(メタデータ) (2023-07-24T17:03:28Z) - Scalable Neural Symbolic Regression using Control Variables [7.725394912527969]
本稿では,制御変数を利用したスケーラブルなシンボル回帰モデルであるScaleSRを提案し,精度とスケーラビリティを両立させる。
まず、ディープニューラルネットワーク(DNN)を用いて観測データからデータジェネレータを学習する。
実験結果から,複数の変数を持つ数学的表現の発見において,提案した ScaleSR は最先端のベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-06-07T18:30:25Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
本稿では,ニューラルネットワークに基づく記号回帰手法を提案する。
非常に小さなトレーニングデータセットとシステムに関する事前知識に基づいて、物理的に妥当なモデルを構築する。
本研究では,TurtleBot 2移動ロボット,磁気操作システム,2つの抵抗の等価抵抗,アンチロックブレーキシステムの長手力の4つの試験システムに対するアプローチを実験的に評価した。
論文 参考訳(メタデータ) (2023-02-01T22:05:04Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Identification of Dynamical Systems using Symbolic Regression [0.0]
本稿では,観測データから動的システムのモデルを特定する手法について述べる。
新しくなったのは、ODEパラメータの勾配に基づく最適化のステップを追加することです。
パラメータの勾配に基づく最適化はモデルの予測精度を向上させる。
論文 参考訳(メタデータ) (2021-07-06T11:41:10Z) - The MELODIC family for simultaneous binary logistic regression in a
reduced space [0.5330240017302619]
同時バイナリロジスティック回帰モデリングのためのMELODICファミリーを提案する。
モデルは、ロジスティック回帰係数または双極子の観点から解釈することができる。
薬物摂取プロファイルに関連する性格特性と、うつ病や不安障害に関連する性格特性の2つの応用が詳細に示されている。
論文 参考訳(メタデータ) (2021-02-16T15:47:20Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Variational Transformers for Diverse Response Generation [71.53159402053392]
変分変換器(VT)は、変分自己注意フィードフォワードシーケンスモデルである。
VTはトランスフォーマーの並列化性と大域的受容場計算とCVAEの変動特性を組み合わせる。
本稿では,1)大域潜伏変数を用いた談話レベルの多様性のモデル化,2)細粒潜伏変数の列によるトランスフォーマーデコーダの拡張,の2種類のVTについて検討する。
論文 参考訳(メタデータ) (2020-03-28T07:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。