Crafting Customisable Characters with LLMs: Introducing SimsChat, a Persona-Driven Role-Playing Agent Framework
- URL: http://arxiv.org/abs/2406.17962v5
- Date: Tue, 25 Feb 2025 16:30:21 GMT
- Title: Crafting Customisable Characters with LLMs: Introducing SimsChat, a Persona-Driven Role-Playing Agent Framework
- Authors: Bohao Yang, Dong Liu, Chenghao Xiao, Kun Zhao, Chen Tang, Chao Li, Lin Yuan, Guang Yang, Lanxiao Huang, Chenghua Lin,
- Abstract summary: Large Language Models (LLMs) demonstrate remarkable ability to comprehend instructions and generate human-like text.<n>We introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters.<n>We present SimsChat, a freely customisable role-playing agent incorporating various realistic settings.
- Score: 29.166067413153353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) demonstrate remarkable ability to comprehend instructions and generate human-like text, enabling sophisticated agent simulation beyond basic behavior replication. However, the potential for creating freely customisable characters remains underexplored. We introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters through personalised characteristic feature injection, enabling diverse character creation according to user preferences. We propose the SimsConv dataset, comprising 68 customised characters and 13,971 multi-turn role-playing dialogues across 1,360 real-world scenes. Characters are initially customised using pre-defined elements (career, aspiration, traits, skills), then expanded through personal and social profiles. Building on this, we present SimsChat, a freely customisable role-playing agent incorporating various realistic settings and topic-specified character interactions. Experimental results on both SimsConv and WikiRoleEval datasets demonstrate SimsChat's superior performance in maintaining character consistency, knowledge accuracy, and appropriate question rejection compared to existing models. Our framework provides valuable insights for developing more accurate and customisable human simulacra. Our data and code are publicly available at https://github.com/Bernard-Yang/SimsChat.
Related papers
- RMTBench: Benchmarking LLMs Through Multi-Turn User-Centric Role-Playing [111.06936588273868]
RMTBench is a comprehensive textbfuser-centric bilingual role-playing benchmark featuring 80 diverse characters and over 8,000 dialogue rounds.<n>Our benchmark constructs dialogues based on explicit user motivations rather than character descriptions, ensuring alignment with practical user applications.<n>By shifting focus from character background to user intention fulfillment, RMTBench bridges the gap between academic evaluation and practical deployment requirements.
arXiv Detail & Related papers (2025-07-27T16:49:47Z) - OmniCharacter: Towards Immersive Role-Playing Agents with Seamless Speech-Language Personality Interaction [123.89581506075461]
We propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency.<n> Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction.<n>Our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms.
arXiv Detail & Related papers (2025-05-26T17:55:06Z) - Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
We introduce CharacterBot, a model designed to replicate both the linguistic patterns and distinctive thought processes of a character.
Using Lu Xun as a case study, we propose four training tasks derived from his 17 essay collections.
These include a pre-training task focused on mastering external linguistic structures and knowledge, as well as three fine-tuning tasks.
We evaluate CharacterBot on three tasks for linguistic accuracy and opinion comprehension, demonstrating that it significantly outperforms the baselines on our adapted metrics.
arXiv Detail & Related papers (2025-02-18T16:11:54Z) - CharacterBox: Evaluating the Role-Playing Capabilities of LLMs in Text-Based Virtual Worlds [74.02480671181685]
Role-playing is a crucial capability of Large Language Models (LLMs)
Current evaluation methods fall short of adequately capturing the nuanced character traits and behaviors essential for authentic role-playing.
We propose CharacterBox, a simulation sandbox designed to generate situational fine-grained character behavior trajectories.
arXiv Detail & Related papers (2024-12-07T12:09:35Z) - Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits [4.092862870428798]
We propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits.
Orca comprises four stages: Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores.
Our experiments demonstrate that our proposed model achieves superior performance on this benchmark.
arXiv Detail & Related papers (2024-11-15T07:35:47Z) - The Drama Machine: Simulating Character Development with LLM Agents [1.999925939110439]
This paper explores use of multiple large language model (LLM) agents to simulate complex, dynamic characters in dramatic scenarios.
We introduce a drama machine framework that coordinates interactions between LLM agents playing different 'Ego' and 'Superego' psychological roles.
Results suggest this multi-agent approach can produce more nuanced, adaptive narratives that evolve over a sequence of dialogical turns.
arXiv Detail & Related papers (2024-08-03T09:40:26Z) - What if Red Can Talk? Dynamic Dialogue Generation Using Large Language Models [0.0]
We introduce a dialogue filler framework that utilizes large language models (LLMs) to generate dynamic and contextually appropriate character interactions.
We test this framework within the environments of Final Fantasy VII Remake and Pokemon.
This study aims to assist developers in crafting more nuanced filler dialogues, thereby enriching player immersion and enhancing the overall RPG experience.
arXiv Detail & Related papers (2024-07-29T19:12:18Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
We propose a goal-oriented, persona-based method to automatically generate diverse multi-turn dialogues simulating human-chatbot interaction.
Our method can simulate human-chatbot dialogues with a high indistinguishability rate.
arXiv Detail & Related papers (2024-07-04T14:49:46Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
We propose to enhance role-playing language models (RPLMs) via personality-indicative data.
Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters.
Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.
arXiv Detail & Related papers (2024-06-27T06:24:00Z) - RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models [6.753588449962107]
RoleCraft-GLM is an innovative framework aimed at enhancing personalized role-playing with Large Language Models (LLMs)
We contribute a unique conversational dataset that shifts from conventional celebrity-centric characters to diverse, non-celebrity personas.
Our approach includes meticulous character development, ensuring dialogues are both realistic and emotionally resonant.
arXiv Detail & Related papers (2023-12-17T17:57:50Z) - CharacterGLM: Customizing Chinese Conversational AI Characters with
Large Language Models [66.4382820107453]
We present CharacterGLM, a series of models built upon ChatGLM, with model sizes ranging from 6B to 66B parameters.
Our CharacterGLM is designed for generating Character-based Dialogues (CharacterDial), which aims to equip a conversational AI system with character customization for satisfying people's inherent social desires and emotional needs.
arXiv Detail & Related papers (2023-11-28T14:49:23Z) - Character-LLM: A Trainable Agent for Role-Playing [67.35139167985008]
Large language models (LLMs) can be used to serve as agents to simulate human behaviors.
We introduce Character-LLM that teach LLMs to act as specific people such as Beethoven, Queen Cleopatra, Julius Caesar, etc.
arXiv Detail & Related papers (2023-10-16T07:58:56Z) - Tachikuma: Understading Complex Interactions with Multi-Character and
Novel Objects by Large Language Models [67.20964015591262]
We introduce a benchmark named Tachikuma, comprising a Multiple character and novel Object based interaction Estimation task and a supporting dataset.
The dataset captures log data from real-time communications during gameplay, providing diverse, grounded, and complex interactions for further explorations.
We present a simple prompting baseline and evaluate its performance, demonstrating its effectiveness in enhancing interaction understanding.
arXiv Detail & Related papers (2023-07-24T07:40:59Z) - Large Language Models Meet Harry Potter: A Bilingual Dataset for
Aligning Dialogue Agents with Characters [70.84938803753062]
We introduce the Harry Potter Dialogue dataset, designed to advance the study of dialogue agents and character alignment.
The dataset encompasses all dialogue sessions (in both English and Chinese) from the Harry Potter series.
It is annotated with vital background information, including dialogue scenes, speakers, character relationships, and attributes.
arXiv Detail & Related papers (2022-11-13T10:16:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.