Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits
- URL: http://arxiv.org/abs/2411.10006v1
- Date: Fri, 15 Nov 2024 07:35:47 GMT
- Title: Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits
- Authors: Yuxuan Huang,
- Abstract summary: We propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits.
Orca comprises four stages: Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores.
Our experiments demonstrate that our proposed model achieves superior performance on this benchmark.
- Score: 4.092862870428798
- License:
- Abstract: Large language models has catalyzed the development of personalized dialogue systems, numerous role-playing conversational agents have emerged. While previous research predominantly focused on enhancing the model's capability to follow instructions by designing character profiles, neglecting the psychological factors that drive human conversations. In this paper, we propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits. Orca comprises four stages: (1) Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores. (2) Data Augment, simulate user's profile, background story, and psychological activities. (3) Dataset construction, personality-conditioned instruction prompting (PCIP) to stimulate LLMs. (4) Modeling and Training, personality-conditioned instruction tuning (PTIT and PSIT), using the generated data to enhance existing open-source LLMs. We introduce OrcaBench, the first benchmark for evaluating the quality of content generated by LLMs on social platforms across multiple scales. Our experiments demonstrate that our proposed model achieves superior performance on this benchmark, demonstrating its excellence and effectiveness in perceiving personality traits that significantly improve role-playing abilities. Our Code is available at https://github.com/Aipura/Orca.
Related papers
- Exploring the Potential of Large Language Models to Simulate Personality [39.58317527488534]
We aim to simulate personal traits according to the Big Five model with the use of large language models (LLMs)
We present a dataset of generated texts with the predefined Big Five characteristics and provide an analytical framework for testing LLMs on a simulation of personality skills.
arXiv Detail & Related papers (2025-02-12T10:17:18Z) - OpenCharacter: Training Customizable Role-Playing LLMs with Large-Scale Synthetic Personas [65.83634577897564]
This study explores a large-scale data synthesis approach to equip large language models with character generalization capabilities.
We begin by synthesizing large-scale character profiles using personas from Persona Hub.
We then explore two strategies: response rewriting and response generation, to create character-aligned instructional responses.
arXiv Detail & Related papers (2025-01-26T07:07:01Z) - BIG5-CHAT: Shaping LLM Personalities Through Training on Human-Grounded Data [28.900987544062257]
We introduce BIG5-CHAT, a large-scale dataset containing 100,000 dialogues designed to ground models in how humans express their personality in language.
Our methods prompting outperform on personality assessments such as BFI and IPIP-NEO, with trait correlations more closely matching human data.
Our experiments reveal that models trained to exhibit higher conscientiousness, higher agreeableness, lower extraversion, and lower neuroticism display better performance on reasoning tasks.
arXiv Detail & Related papers (2024-10-21T20:32:27Z) - Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
arXiv Detail & Related papers (2024-10-16T07:47:45Z) - Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data [58.92110996840019]
We propose to enhance role-playing language models (RPLMs) via personality-indicative data.
Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters.
Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.
arXiv Detail & Related papers (2024-06-27T06:24:00Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - Driving Generative Agents With Their Personality [0.0]
This research explores the potential of Large Language Models (LLMs) to utilize psychometric values, specifically personality information, within the context of video game character development.
The research shows an LLM can consistently represent a given personality profile, thereby enhancing the human-like characteristics of game characters.
arXiv Detail & Related papers (2024-02-21T21:29:57Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Character-LLM: A Trainable Agent for Role-Playing [67.35139167985008]
Large language models (LLMs) can be used to serve as agents to simulate human behaviors.
We introduce Character-LLM that teach LLMs to act as specific people such as Beethoven, Queen Cleopatra, Julius Caesar, etc.
arXiv Detail & Related papers (2023-10-16T07:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.