LABOR-LLM: Language-Based Occupational Representations with Large Language Models
- URL: http://arxiv.org/abs/2406.17972v2
- Date: Wed, 11 Dec 2024 06:39:43 GMT
- Title: LABOR-LLM: Language-Based Occupational Representations with Large Language Models
- Authors: Susan Athey, Herman Brunborg, Tianyu Du, Ayush Kanodia, Keyon Vafa,
- Abstract summary: CAREER predicted a worker's next job as a function of career history.
This paper considers an alternative where the resume-based foundation model is replaced by a large language model.
- Score: 8.909328013944567
- License:
- Abstract: Vafa et al. (2024) introduced a transformer-based econometric model, CAREER, that predicts a worker's next job as a function of career history (an "occupation model"). CAREER was initially estimated ("pre-trained") using a large, unrepresentative resume dataset, which served as a "foundation model," and parameter estimation was continued ("fine-tuned") using data from a representative survey. CAREER had better predictive performance than benchmarks. This paper considers an alternative where the resume-based foundation model is replaced by a large language model (LLM). We convert tabular data from the survey into text files that resemble resumes and fine-tune the LLMs using these text files with the objective to predict the next token (word). The resulting fine-tuned LLM is used as an input to an occupation model. Its predictive performance surpasses all prior models. We demonstrate the value of fine-tuning and further show that by adding more career data from a different population, fine-tuning smaller LLMs surpasses the performance of fine-tuning larger models.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Scaling Retrieval-Based Language Models with a Trillion-Token Datastore [85.4310806466002]
We find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation.
By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget.
arXiv Detail & Related papers (2024-07-09T08:27:27Z) - Language-Based User Profiles for Recommendation [24.685132962653793]
The Language-based Factorization Model (LFM) is an encoder/decoder model where both the encoder and the decoder are large language models (LLMs)
The encoder LLM generates a compact natural-language profile of the user's interests from the user's rating history.
We evaluate our LFM approach on the MovieLens dataset, comparing it against matrix factorization and an LLM model that directly predicts from the user's rating history.
arXiv Detail & Related papers (2024-02-23T21:58:50Z) - Harnessing Large Language Models as Post-hoc Correctors [6.288056740658763]
We show that an LLM can work as a post-hoc corrector to propose corrections for the predictions of an arbitrary Machine Learning model.
We form a contextual knowledge database by incorporating the dataset's label information and the ML model's predictions on the validation dataset.
Our experimental results on text analysis and the challenging molecular predictions show that model improves the performance of a number of models by up to 39%.
arXiv Detail & Related papers (2024-02-20T22:50:41Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Let's Predict Who Will Move to a New Job [0.0]
We discuss how machine learning is used to predict who will move to a new job.
Data is pre-processed into a suitable format for ML models.
Models are assessed using decision support metrics such as precision, recall, F1-Score, and accuracy.
arXiv Detail & Related papers (2023-09-15T11:43:09Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Retrieval-Pretrained Transformer: Long-range Language Modeling with Self-retrieval [51.437420003471615]
We propose the Retrieval-Pretrained Transformer (RPT), an architecture and training procedure for jointly training a retrieval-augmented LM from scratch.
RPT improves retrieval quality and subsequently perplexity across the board compared to strong baselines.
arXiv Detail & Related papers (2023-06-23T10:18:02Z) - The future is different: Large pre-trained language models fail in
prediction tasks [2.9005223064604078]
We introduce four new REDDIT datasets, namely the WALLSTREETBETS, ASKSCIENCE, THE DONALD, and POLITICS sub-reddits.
First, we empirically demonstrate that LPLM can display average performance drops of about 88% when predicting the popularity of future posts from sub-reddits whose topic distribution changes with time.
We then introduce a simple methodology that leverages neural variational dynamic topic models and attention mechanisms to infer temporal language model representations for regression tasks.
arXiv Detail & Related papers (2022-11-01T11:01:36Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.