Entangling Schrödinger's cat states by bridging discrete- and continuous-variable encoding
- URL: http://arxiv.org/abs/2406.17999v2
- Date: Tue, 21 Jan 2025 18:56:15 GMT
- Title: Entangling Schrödinger's cat states by bridging discrete- and continuous-variable encoding
- Authors: Daisuke Hoshi, Toshiaki Nagase, Sangil Kwon, Daisuke Iyama, Takahiko Kamiya, Shiori Fujii, Hiroto Mukai, Shahnawaz Ahmed, Anton Frisk Kockum, Shohei Watabe, Fumiki Yoshihara, Jaw-Shen Tsai,
- Abstract summary: We show that a DV-CV hybrid approach, applied to superconducting Kerr parametric oscillators (KPOs), enables us to entangle a pair of Schr"odinger's cat states by two methods.
Our work offers powerful applications of DV-CV hybridization and marks a first step toward developing a multi-qubit platform.
- Score: 0.17708236183599538
- License:
- Abstract: In quantum information processing, two primary research directions have emerged: one based on discrete variables (DV) and the other on the structure of quantum states in a continuous-variable (CV) space. Integrating these two approaches could unlock new potentials, overcoming their respective limitations. Here, we show that such a DV-CV hybrid approach, applied to superconducting Kerr parametric oscillators (KPOs), enables us to entangle a pair of Schr\"odinger's cat states by two methods. The first involves the entanglement-preserving conversion between Bell states in the Fock-state basis (DV encoding) and those in the cat-state basis (CV encoding). The second method implements a $\sqrt{\textrm{iSWAP}}$ gate between two cat states following the procedure for Fock-state encoding. This simple and fast gate operation completes a universal quantum gate set in a KPO system. Our work offers powerful applications of DV-CV hybridization and marks a first step toward developing a multi-qubit platform based on planar KPO systems.
Related papers
- A dual-species Rydberg array [0.17592522344393485]
We create a dual-species Rydberg array consisting of rubidium (Rb) and cesium (Cs) atoms.
We generate a Bell state between Rb and Cs hyperfine qubits via an interspecies controlled-phase gate.
We combine interspecies entanglement with native midcircuit readout to achieve quantum non-demolition measurement of a Rb qubit.
arXiv Detail & Related papers (2024-01-18T19:00:02Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - A critical Schr\"odinger cat qubit [0.0]
In cat qubits, an engineered dissipation scheme combining two-photon drive and loss has been used to stabilize this manifold.
In Kerr cat qubits, where highly-performing gates can be engineered, two-photon drive and Kerr nonlinearity cooperate to confine the system.
We show that large detunings and small, but non-negligible, two-photon loss rates are fundamental to achieve optimal performance.
arXiv Detail & Related papers (2022-08-09T17:44:00Z) - Preparing Valence-Bond-Solid states on noisy intermediate-scale quantum
computers [0.5608803995383594]
We propose methods to initialize on a gate-based quantum computer a general class of quantum spin wave functions.
VBS states are the exact ground states of a class of interacting quantum spin models introduced by Affleck, Kennedy, Lieb and Tasaki.
We find that schemes to prepare VBS states based on their tensor-network representations yield quantum circuits that are too deep to be within reach of noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2022-07-15T19:40:15Z) - Two-qubit gate using conditional driving for highly detuned
Kerr-nonlinear parametric oscillators [0.0]
We propose a two-qubit gate $R_zz$ for highly detuned KPOs.
We perform simulations using a conventional KPO Hamiltonian derived from a superconducting-circuit model.
The simulation results indicate that two-qubit gates can be implemented with high fidelity.
arXiv Detail & Related papers (2022-04-07T10:40:13Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Quantum Gate for Kerr Nonlinear Parametric Oscillator Using Effective
Excited States [0.0]
We propose a method for a high-fidelity $R_x$ gate by exciting the KPO outside the qubit space with parity-selective transitions.
The proposed method can realize a continuous $R_x$ gate and thus is expected to be useful for, e.g., recently proposed variational quantum algorithms.
arXiv Detail & Related papers (2021-08-06T12:59:29Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.