論文の概要: Fuzzing at Scale: The Untold Story of the Scheduler
- arxiv url: http://arxiv.org/abs/2406.18058v1
- Date: Wed, 26 Jun 2024 04:28:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:38:19.386072
- Title: Fuzzing at Scale: The Untold Story of the Scheduler
- Title(参考訳): スケールでのファジング: スケジューリングの未完成なストーリー
- Authors: Ivica Nikolic, Racchit Jain,
- Abstract要約: 我々は、どのプログラムをファズすべきか、どのくらいの間、プログラム全体で見つかったバグの数に大きな影響を与えるかを決定する、よく設計された戦略を示します。
いくつかのスケジューラを開発し、最も洗練されたスケジューラを活用して、新しくコンパイルされた約5,000のUbuntuプログラムのベンチマークを同時にファズし、4908のバグを検出する。
- 参考スコア(独自算出の注目度): 0.48342038441006807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How to search for bugs in 1,000 programs using a pre-existing fuzzer and a standard PC? We consider this problem and show that a well-designed strategy that determines which programs to fuzz and for how long can greatly impact the number of bugs found across the programs. In fact, the impact of employing an effective strategy is comparable to that of utilizing a state-of-the-art fuzzer. The considered problem is referred to as fuzzing at scale, and the strategy as scheduler. We show that besides a naive scheduler, that allocates equal fuzz time to all programs, we can consider dynamic schedulers that adjust time allocation based on the ongoing fuzzing progress of individual programs. Such schedulers are superior because they lead both to higher number of total found bugs and to higher number of found bugs for most programs. The performance gap between naive and dynamic schedulers can be as wide (or even wider) as the gap between two fuzzers. Our findings thus suggest that the problem of advancing schedulers is fundamental for fuzzing at scale. We develop several schedulers and leverage the most sophisticated one to fuzz simultaneously our newly compiled benchmark of around 5,000 Ubuntu programs, and detect 4908 bugs.
- Abstract(参考訳): 既存のファジィと標準PCを使って1000のプログラムでバグを検索する方法?
この問題を考慮し、どのプログラムをファズすべきかを判断し、どのくらいの時間にわたってプログラム全体で見られるバグの数に大きな影響を与えるかを示す。
実際、効果的な戦略を採用することが与える影響は、最先端のファジィザを利用する方法に匹敵する。
検討された問題は大規模なファジィング(fuzzing)と呼ばれ、戦略はスケジューラとして扱われる。
本研究では,全てのプログラムに同等のファジタイムを割り当てるナイーブなスケジューラの他に,個々のプログラムのファジリング進行に応じて時間割当を調整する動的スケジューラを考えることができることを示す。
このようなスケジューラは、発見されたバグの総数と、ほとんどのプログラムで見つかったバグの数の両方につながるため、優れている。
ナイーブスケジューラとダイナミックスケジューラの間のパフォーマンスギャップは、2つのファッジャ間のギャップと同じくらい広く(あるいはさらに広い)ことができる。
この結果から,スケジューラの進行問題は大規模なファジリングに不可欠であることが示唆された。
いくつかのスケジューラを開発し、最も洗練されたスケジューラを活用して、新しくコンパイルされた約5,000のUbuntuプログラムのベンチマークを同時にファズし、4908のバグを検出する。
関連論文リスト
- FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
我々は,攻撃を成功させることで,入力ファイルのパターンを学習するために,微調整された大言語モデル(FuzzCoder)を採用することを提案する。
FuzzCoderは、プログラムの異常な動作を引き起こすために、入力ファイル内の突然変異位置と戦略位置を予測することができる。
論文 参考訳(メタデータ) (2024-09-03T14:40:31Z) - VDebugger: Harnessing Execution Feedback for Debugging Visual Programs [103.61860743476933]
V Debuggerは、視覚プログラムのローカライズとデバッギングのために、段階的に実行を追跡することで訓練された、批評家とリファインダーのフレームワークである。
Vデバッガは、詳細な実行フィードバックを活用してプログラムエラーを特定し、修正する。
6つのデータセットの評価は、Vデバッガの有効性を示し、ダウンストリームタスクの精度が最大3.2%向上したことを示している。
論文 参考訳(メタデータ) (2024-06-19T11:09:16Z) - AlphaZeroES: Direct score maximization outperforms planning loss minimization [61.17702187957206]
実行時の計画では、シングルエージェントとマルチエージェントの両方の設定でエージェントのパフォーマンスが劇的に向上することが示されている。
実行時に計画するアプローチのファミリは、AlphaZeroとその変種で、Monte Carlo Tree Searchと、状態値とアクション確率を予測することによって検索をガイドするニューラルネットワークを使用する。
複数の環境にまたがって、エピソードスコアを直接最大化し、計画損失を最小限に抑えることを示す。
論文 参考訳(メタデータ) (2024-06-12T23:00:59Z) - FOX: Coverage-guided Fuzzing as Online Stochastic Control [13.3158115776899]
ファジィング(fuzzing)は、ターゲットプログラムに対してランダムなテスト入力を生成してソフトウェア脆弱性を発見する効果的な手法である。
本稿では、スケジューラとミュータレータコンポーネントに焦点をあて、既存のカバレッジ誘導ファザの限界に対処する。
本稿では、制御理論アプローチの概念実証実装であるFOXについて、業界標準ファザと比較する。
論文 参考訳(メタデータ) (2024-06-06T21:21:05Z) - Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer Seed Scheduling with T-Scheduler [8.447499888458633]
Fuzzingは高度にスケール可能なソフトウェアテスト技術であり、変更された入力で実行することでターゲットプログラムのバグを明らかにする。
マルチアームバンディット理論に基づくシードスケジューラであるT-Schedulerを提案する。
ファジィリングの35 CPU yr 以上の T-Scheduler を評価し,11 の最先端スケジューラと比較した。
論文 参考訳(メタデータ) (2023-12-07T23:27:55Z) - Fuzzing with Quantitative and Adaptive Hot-Bytes Identification [6.442499249981947]
アメリカのファジィ・ロック(fuzzy lop)はファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)ツールだ。
以下の原則に基づいて設計したツールという手法を提案する。
実世界の10のプログラムとLAVA-Mデータセットによる評価結果から,ツールキーブが分岐カバレッジを持続的に増加させ,他のファザよりも多くのバグを発見できた。
論文 参考訳(メタデータ) (2023-07-05T13:41:35Z) - NAPG: Non-Autoregressive Program Generation for Hybrid Tabular-Textual
Question Answering [52.10214317661547]
現在の数値推論法はプログラムシーケンスを自己回帰的にデコードする。
プログラム生成の精度は、デコードステップがエラー伝搬によって展開されるにつれて急激に低下する。
本稿では,非自己回帰型プログラム生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-07T11:25:21Z) - Fault-Aware Neural Code Rankers [64.41888054066861]
サンプルプログラムの正しさを予測できる故障認識型ニューラルネットワークローダを提案する。
我々のフォールト・アウェア・ローダは、様々なコード生成モデルのpass@1精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-06-04T22:01:05Z) - Learning from Self-Sampled Correct and Partially-Correct Programs [96.66452896657991]
そこで本研究では,モデルが学習中にサンプリングを行い,自己サンプリングされた完全正当プログラムと部分正当プログラムの両方から学習することを提案する。
自己サンプリング型プログラムと部分修正型プログラムを併用することで,学習とサンプリングプロセスのガイドに役立てることができることを示す。
提案手法は,MLEを用いた単一の参照プログラムからの学習と比較して,パス@kの性能を3.1%から12.3%向上させる。
論文 参考訳(メタデータ) (2022-05-28T03:31:07Z) - S-DABT: Schedule and Dependency-Aware Bug Triage in Open-Source Bug
Tracking Systems [0.0]
手動のバグ修正のスケジューリングは、時間がかかり、面倒で、エラーを起こしやすい。
そこで我々は,S-DABT(Schedule and Dependency-aware Bug Triage)を提案する。
論文 参考訳(メタデータ) (2022-04-12T17:36:43Z) - MEUZZ: Smart Seed Scheduling for Hybrid Fuzzing [21.318110758739675]
機械学習によるハイブリッドfUZZシステム(MEUZZ)
MEUZZは、過去の種スケジューリング決定から学んだ知識に基づいて、どの新しい種がより良いファジィング収量をもたらすと期待されているかを決定する。
結果: MEUZZ は最先端のグレーボックスとハイブリッドファジィよりも優れていた。
論文 参考訳(メタデータ) (2020-02-20T05:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。