SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance
- URL: http://arxiv.org/abs/2406.18118v2
- Date: Fri, 28 Jun 2024 06:06:59 GMT
- Title: SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance
- Authors: Caishuang Huang, Wanxu Zhao, Rui Zheng, Huijie Lv, Shihan Dou, Sixian Li, Xiao Wang, Enyu Zhou, Junjie Ye, Yuming Yang, Tao Gui, Qi Zhang, Xuanjing Huang,
- Abstract summary: SafeAligner is a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks.
We develop two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses.
We show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones.
- Score: 48.80398992974831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the development of large language models (LLMs) rapidly advances, securing these models effectively without compromising their utility has become a pivotal area of research. However, current defense strategies against jailbreak attacks (i.e., efforts to bypass security protocols) often suffer from limited adaptability, restricted general capability, and high cost. To address these challenges, we introduce SafeAligner, a methodology implemented at the decoding stage to fortify defenses against jailbreak attacks. We begin by developing two specialized models: the Sentinel Model, which is trained to foster safety, and the Intruder Model, designed to generate riskier responses. SafeAligner leverages the disparity in security levels between the responses from these models to differentiate between harmful and beneficial tokens, effectively guiding the safety alignment by altering the output token distribution of the target model. Extensive experiments show that SafeAligner can increase the likelihood of beneficial tokens, while reducing the occurrence of harmful ones, thereby ensuring secure alignment with minimal loss to generality.
Related papers
- Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
Large language models (LLMs) have demonstrated immense utility across various industries.
As LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts.
This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens.
arXiv Detail & Related papers (2024-10-09T12:09:30Z) - Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models [8.024771725860127]
Jailbreak attacks manipulate large language models into generating harmful content.
Jailbreak Antidote enables real-time adjustment of safety preferences by manipulating a sparse subset of the model's internal states.
Our analysis reveals that safety-related information in LLMs is sparsely distributed.
arXiv Detail & Related papers (2024-10-03T08:34:17Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
arXiv Detail & Related papers (2024-09-26T10:12:19Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
This study addresses a critical gap in safety tuning practices for Large Language Models (LLMs)
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.
DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions.
We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space.
Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations.
arXiv Detail & Related papers (2024-06-24T19:29:47Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Towards Comprehensive and Efficient Post Safety Alignment of Large Language Models via Safety Patching [77.36097118561057]
textscSafePatching is a novel framework for comprehensive and efficient PSA.
textscSafePatching achieves a more comprehensive and efficient PSA than baseline methods.
arXiv Detail & Related papers (2024-05-22T16:51:07Z) - Jailbroken: How Does LLM Safety Training Fail? [92.8748773632051]
"jailbreak" attacks on early releases of ChatGPT elicit undesired behavior.
We investigate why such attacks succeed and how they can be created.
New attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests.
arXiv Detail & Related papers (2023-07-05T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.