論文の概要: SynRS3D: A Synthetic Dataset for Global 3D Semantic Understanding from Monocular Remote Sensing Imagery
- arxiv url: http://arxiv.org/abs/2406.18151v1
- Date: Wed, 26 Jun 2024 08:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:08:51.649416
- Title: SynRS3D: A Synthetic Dataset for Global 3D Semantic Understanding from Monocular Remote Sensing Imagery
- Title(参考訳): SynRS3D:モノクルリモートセンシング画像からのグローバル3次元意味理解のための合成データセット
- Authors: Jian Song, Hongruixuan Chen, Weihao Xuan, Junshi Xia, Naoto Yokoya,
- Abstract要約: 単一視点高分解能リモートセンシング(RS)画像からのグローバルセマンティック3D理解は地球観測(EO)に不可欠である
我々は、EOのための特殊な合成データ生成パイプラインを開発し、最大の合成RS3DデータセットであるSynRS3Dを紹介する。
SynRS3Dは69,667個の高解像度光学画像で構成されており、世界中の6つの異なる都市スタイルをカバーし、8種類のランドカバー、正確な高さ情報、建築変更マスクを備えている。
- 参考スコア(独自算出の注目度): 17.364630812389038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Global semantic 3D understanding from single-view high-resolution remote sensing (RS) imagery is crucial for Earth Observation (EO). However, this task faces significant challenges due to the high costs of annotations and data collection, as well as geographically restricted data availability. To address these challenges, synthetic data offer a promising solution by being easily accessible and thus enabling the provision of large and diverse datasets. We develop a specialized synthetic data generation pipeline for EO and introduce SynRS3D, the largest synthetic RS 3D dataset. SynRS3D comprises 69,667 high-resolution optical images that cover six different city styles worldwide and feature eight land cover types, precise height information, and building change masks. To further enhance its utility, we develop a novel multi-task unsupervised domain adaptation (UDA) method, RS3DAda, coupled with our synthetic dataset, which facilitates the RS-specific transition from synthetic to real scenarios for land cover mapping and height estimation tasks, ultimately enabling global monocular 3D semantic understanding based on synthetic data. Extensive experiments on various real-world datasets demonstrate the adaptability and effectiveness of our synthetic dataset and proposed RS3DAda method. SynRS3D and related codes will be available.
- Abstract(参考訳): 単一視点高解像度リモートセンシング(RS)画像からのグローバルなセマンティック3D理解は、地球観測(EO)にとって不可欠である。
しかし、このタスクは、地理的に制限されたデータ可用性だけでなく、アノテーションやデータ収集のコストが高いため、重大な課題に直面している。
これらの課題に対処するため、合成データは容易にアクセス可能で、大規模で多様なデータセットの提供を可能にすることによって、有望なソリューションを提供する。
我々は、EOのための特殊な合成データ生成パイプラインを開発し、最大の合成RS3DデータセットであるSynRS3Dを紹介する。
SynRS3Dは69,667個の高解像度光学画像で構成されており、世界中の6つの異なる都市スタイルをカバーし、8種類のランドカバー、正確な高さ情報、建築変更マスクを備えている。
本手法は, 合成データに基づくグローバルなモノクロ3D意味理解を可能にするため, 土地被覆マッピングと高度推定タスクの合成シナリオから実際のシナリオへのRS固有の遷移を容易にする。
各種実世界のデータセットに対する大規模な実験により, 合成データセットの適応性と有効性を示すとともに, RS3DADA法を提案する。
SynRS3Dおよび関連コードは利用可能である。
関連論文リスト
- SyntheOcc: Synthesize Geometric-Controlled Street View Images through 3D Semantic MPIs [34.41011015930057]
SyntheOccは、2次元拡散モデルに対する条件入力として3次元幾何学情報を効率的にエンコードする方法の課題に対処する。
提案手法は,3次元意味的マルチプレーン画像(MPI)を革新的に組み込んで,包括的かつ空間的に整合した3次元シーン記述を提供する。
論文 参考訳(メタデータ) (2024-10-01T02:29:24Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
本稿では,マルチモーダルな3Dシーンデータセットと階層型言語アノテーションを用いたベンチマーク,MMScanを構築した。
結果として得られたマルチモーダルな3Dデータセットは、109kオブジェクトと7.7kリージョン上の1.4Mメタアノテーション付きキャプションと、3Dビジュアルグラウンドと質問応答ベンチマークのための3.04M以上の多様なサンプルを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T17:59:30Z) - Hardness-Aware Scene Synthesis for Semi-Supervised 3D Object Detection [59.33188668341604]
3次元物体検出は、自律運転知覚の基本的なタスクとして機能する。
ポイントクラウドデータのための高品質なアノテーションを得るためには、コストがかかる。
本稿では,適応型合成シーンを生成するために,ハードネス対応シーン合成(HASS)手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T17:59:23Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
本研究は,RGB 6Dのカテゴリレベルでのポーズ推定を向上するための拡散モデルに基づく新規ビュー合成器の実用性を示す最初の研究であるZero123-6Dを示す。
本手法は,データ要求の低減,ゼロショットカテゴリレベルの6Dポーズ推定タスクにおける深度情報の必要性の除去,およびCO3Dデータセットの実験により定量的に示された性能の向上を示す。
論文 参考訳(メタデータ) (2024-03-21T10:38:18Z) - SyntheWorld: A Large-Scale Synthetic Dataset for Land Cover Mapping and
Building Change Detection [20.985372561774415]
我々は、品質、多様性、スケールに比類しない合成データセットであるSyntheWorldを提示する。
サブメーターレベルのピクセルを持つ4万枚の画像と8つのカテゴリの詳細なランドカバーアノテーションを含んでいる。
リモートセンシング画像処理研究を容易にするためのSyntheWorldをリリースする。
論文 参考訳(メタデータ) (2023-09-05T02:42:41Z) - UniG3D: A Unified 3D Object Generation Dataset [75.49544172927749]
UniG3Dは、ShapeNetデータセット上に普遍的なデータ変換パイプラインを用いて構築された、統一された3Dオブジェクト生成データセットである。
このパイプラインは、各生の3Dモデルを包括的なマルチモーダルデータ表現に変換する。
データセットのデータソースの選択は、そのスケールと品質に基づいています。
論文 参考訳(メタデータ) (2023-06-19T07:03:45Z) - SCoDA: Domain Adaptive Shape Completion for Real Scans [78.92028595499245]
点雲からの3D形状の完成は、特に現実世界のオブジェクトのスキャンによる難しい作業である。
合成データから実スキャン形状完了の領域適応のための新しいタスクであるSCoDAを提案する。
本稿では,知識伝達のための新しいクロスドメイン機能融合手法と,実データからの堅牢な学習のための新しいボリューム一貫性の自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-20T09:38:26Z) - STPLS3D: A Large-Scale Synthetic and Real Aerial Photogrammetry 3D Point
Cloud Dataset [6.812704277866377]
本稿では,合成空中測光点雲生成パイプラインを提案する。
仮想ゲームで合成データを生成するのとは異なり、提案したパイプラインは実環境の再構築プロセスをシミュレートする。
我々は、リッチな注釈付き合成3D空中測光点クラウドデータセットを提案する。
論文 参考訳(メタデータ) (2022-03-17T03:50:40Z) - Semi-synthesis: A fast way to produce effective datasets for stereo
matching [16.602343511350252]
現実に近いテクスチャレンダリングは、ステレオマッチングのパフォーマンスを高める重要な要素です。
実物に近いテクスチャーで大量のデータを合成する効果的かつ高速な方法である半合成法を提案します。
実際のデータセットのさらなる微調整により、MiddleburyのSOTAパフォーマンスとKITTIおよびETH3Dデータセットの競争結果も達成します。
論文 参考訳(メタデータ) (2021-01-26T14:34:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。