論文の概要: Evaluating the Impact of Synthetic Data on Object Detection Tasks in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2503.09803v1
- Date: Wed, 12 Mar 2025 20:13:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:53:18.795581
- Title: Evaluating the Impact of Synthetic Data on Object Detection Tasks in Autonomous Driving
- Title(参考訳): 自動走行における物体検出課題に対する合成データの影響評価
- Authors: Enes Özeren, Arka Bhowmick,
- Abstract要約: 実・合成・混合データセットに基づいて訓練された2次元・3次元オブジェクト検出タスクを比較した。
その結果,実データと合成データを組み合わせることで,物体検出モデルのロバスト性や一般化が向上することが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The increasing applications of autonomous driving systems necessitates large-scale, high-quality datasets to ensure robust performance across diverse scenarios. Synthetic data has emerged as a viable solution to augment real-world datasets due to its cost-effectiveness, availability of precise ground-truth labels, and the ability to model specific edge cases. However, synthetic data may introduce distributional differences and biases that could impact model performance in real-world settings. To evaluate the utility and limitations of synthetic data, we conducted controlled experiments using multiple real-world datasets and a synthetic dataset generated by BIT Technology Solutions GmbH. Our study spans two sensor modalities, camera and LiDAR, and investigates both 2D and 3D object detection tasks. We compare models trained on real, synthetic, and mixed datasets, analyzing their robustness and generalization capabilities. Our findings demonstrate that the use of a combination of real and synthetic data improves the robustness and generalization of object detection models, underscoring the potential of synthetic data in advancing autonomous driving technologies.
- Abstract(参考訳): 自律運転システムのアプリケーションの増加は、さまざまなシナリオで堅牢なパフォーマンスを確保するために、大規模で高品質なデータセットを必要とする。
合成データは、コスト効率、正確な接地トラスラベルの可用性、特定のエッジケースをモデル化する能力のために、現実のデータセットを拡張可能なソリューションとして出現した。
しかし、合成データは、実際の環境でのモデル性能に影響を与える可能性のある分布差とバイアスをもたらす可能性がある。
合成データの有用性と限界を評価するため,BIT Technology Solutions GmbHによって生成された複数の実世界のデータセットと合成データセットを用いて制御実験を行った。
本研究は、カメラとLiDARの2つのセンサモードにまたがり、2Dと3Dの両方のオブジェクト検出タスクについて検討する。
実、合成、混合データセットで訓練されたモデルを比較し、その堅牢性と一般化能力を解析する。
本研究は, 実データと合成データの組み合わせにより, 物体検出モデルの堅牢性と一般化が向上し, 自律走行技術における合成データの可能性が強調されることを示した。
関連論文リスト
- Enhancing Object Detection Accuracy in Autonomous Vehicles Using Synthetic Data [0.8267034114134277]
機械学習モデルの性能は、トレーニングデータセットの性質とサイズに依存する。
正確で信頼性の高い機械学習モデルを構築するためには、高品質、多様性、関連性、代表的トレーニングデータが不可欠である。
十分に設計された合成データは、機械学習アルゴリズムの性能を向上させることができると仮定されている。
論文 参考訳(メタデータ) (2024-11-23T16:38:02Z) - Synthetic data augmentation for robotic mobility aids to support blind and low vision people [5.024531194389658]
視覚障害者のためのロボットモビリティ支援(BLV)は、深層学習に基づく視覚モデルに大きく依存している。
これらのモデルの性能は、実世界のデータセットの可用性と多様性によって制約されることが多い。
本研究では,Unreal Engine 4を用いて生成した合成データの有効性について検討した。
論文 参考訳(メタデータ) (2024-09-17T13:17:28Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
本研究では,合成データと実世界のデータとの等価性,実データに対する合成データの置換可能性,合成データ生成装置の柔軟性について検討する。
以上の結果から, 合成データによりモデル性能が向上するだけでなく, 実データへの置換性も向上し, 性能損失の60%から80%が置換可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-24T17:21:32Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
セマンティックセグメンテーションモデルの現実的信頼性を総合的に評価するために、合成データを具体的に生成する方法を初めて示す。
この合成データは、事前訓練されたセグメンタの堅牢性を評価するために使用される。
セグメンタのキャリブレーションとOOD検出能力を向上するために,我々のアプローチをどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2023-12-14T18:56:07Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study
on Telematics Data with ChatGPT [0.0]
この研究は、OpenAIの強力な言語モデルであるChatGPTを活用して、特にテレマティクス分野における合成データセットの構築と利用に力を入れている。
このデータ作成プロセスを説明するために、合成テレマティクスデータセットの生成に焦点を当てたハンズオンケーススタディが実施されている。
論文 参考訳(メタデータ) (2023-06-23T15:15:13Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。