DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes
- URL: http://arxiv.org/abs/2406.18179v1
- Date: Wed, 26 Jun 2024 08:53:26 GMT
- Title: DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes
- Authors: Chaonan Ji, Tonio Fincke, Vitus Benson, Gustau Camps-Valls, Miguel-Angel Fernandez-Torres, Fabian Gans, Guido Kraemer, Francesco Martinuzzi, David Montero, Karin Mora, Oscar J. Pellicer-Valero, Claire Robin, Maximilian Soechting, Melanie Weynants, Miguel D. Mahecha,
- Abstract summary: Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets.
Here, we introduce the DeepExtremes database, tailored to map around heatwave and drought extreme impact.
It comprises over 40,000 spatially sampled small data cubes (i.e. minicubes) globally, with a spatial coverage of 2.5 by 2.5 km.
- Score: 5.736700805381591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models. Despite recent progress in deep learning to ecosystem monitoring, there is a need for datasets specifically designed to analyse compound heatwave and drought extreme impact. Here, we introduce the DeepExtremeCubes database, tailored to map around these extremes, focusing on persistent natural vegetation. It comprises over 40,000 spatially sampled small data cubes (i.e. minicubes) globally, with a spatial coverage of 2.5 by 2.5 km. Each minicube includes (i) Sentinel-2 L2A images, (ii) ERA5-Land variables and generated extreme event cube covering 2016 to 2022, and (iii) ancillary land cover and topography maps. The paper aims to (1) streamline data accessibility, structuring, pre-processing, and enhance scientific reproducibility, and (2) facilitate biosphere dynamics forecasting in response to compound extremes.
Related papers
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Global atmospheric data assimilation with multi-modal masked autoencoders [20.776143147372427]
"EarthNet" is a multi-modal foundation model for data assimilation.
It learns to predict a global gap-filled atmospheric state solely from satellite observations.
It produces a global 0.16 degree reanalysis dataset of 3D atmospheric temperature and humidity.
arXiv Detail & Related papers (2024-07-16T13:15:51Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Using Multi-Temporal Sentinel-1 and Sentinel-2 data for water bodies
mapping [40.996860106131244]
Climate change is intensifying extreme weather events, causing both water scarcity and severe rainfall unpredictability.
This paper aims to provide valuable insights for comprehensive water resource monitoring under diverse meteorological conditions.
arXiv Detail & Related papers (2024-01-05T18:11:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Earthformer: Exploring Space-Time Transformers for Earth System
Forecasting [27.60569643222878]
We propose Earthformer, a space-time Transformer for Earth system forecasting.
The Transformer is based on a generic, flexible and efficient space-time attention block, named Cuboid Attention.
Experiments on two real-world benchmarks about precipitation nowcasting and El Nino/Southerntemporaltion show Earthformer achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-07-12T20:52:26Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
In autonomous racing, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres.
In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions.
We introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors.
arXiv Detail & Related papers (2022-01-10T10:02:40Z) - EarthNet2021: A novel large-scale dataset and challenge for forecasting
localized climate impacts [12.795776149170978]
Large Earth observation datasets now enable us to create machine learning models capable of translating coarse weather information into high-resolution Earth surface forecasts.
We define high-resolution Earth surface forecasting as video prediction of satellite imagery conditional on mesoscale weather forecasts.
We introduce EarthNet 2021, a new curated dataset containing target-temporal Sentinel 2 satellite imagery at 20 m resolution, matched with high-resolution topography and mesoscale (1.28 km) weather variables.
arXiv Detail & Related papers (2020-12-11T11:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.