Deep Learning for Sea Surface Temperature Reconstruction under Cloud Occlusion
- URL: http://arxiv.org/abs/2412.03413v1
- Date: Wed, 04 Dec 2024 15:49:49 GMT
- Title: Deep Learning for Sea Surface Temperature Reconstruction under Cloud Occlusion
- Authors: Andrea Asperti, Ali Aydogdu, Emanuela Clementi, Angelo Greco, Lorenzo Mentaschi, Fabio Merizzi, Pietro Miraglio, Paolo Oddo, Nadia Pinardi, Alessandro Testa,
- Abstract summary: Large-scale Sea Surface Temperature (SST) monitoring relies on satellite infrared radiation detection.
Cloud cover presents a major challenge, creating extensive observational gaps.
We employ deep neural networks to reconstruct cloud-covered portions of satellite imagery.
- Score: 33.025831091005784
- License:
- Abstract: Sea Surface Temperature (SST) is crucial for understanding Earth's oceans and climate, significantly influencing weather patterns, ocean currents, marine ecosystem health, and the global energy balance. Large-scale SST monitoring relies on satellite infrared radiation detection, but cloud cover presents a major challenge, creating extensive observational gaps and hampering our ability to fully capture large-scale ocean temperature patterns. Efforts to address these gaps in existing L4 datasets have been made, but they often exhibit notable local and seasonal biases, compromising data reliability and accuracy. To tackle this challenge, we employed deep neural networks to reconstruct cloud-covered portions of satellite imagery while preserving the integrity of observed values in cloud-free areas, using MODIS satellite derived observations of SST. Our best-performing architecture showed significant skill improvements over established methodologies, achieving substantial reductions in error metrics when benchmarked against widely used approaches and datasets. These results underscore the potential of advanced AI techniques to enhance the completeness of satellite observations in Earth-science remote sensing, providing more accurate and reliable datasets for environmental assessments, data-driven model training, climate research, and seamless integration into model data assimilation workflows.
Related papers
- Satellite Observations Guided Diffusion Model for Accurate Meteorological States at Arbitrary Resolution [48.34051432429767]
We propose a conditional diffusion model pre-trained on ERA5 reanalysis data with satellite observations (GridSat) as conditions.
During the training process, we propose to fuse the information from GridSat satellite observations into ERA5 maps via the attention mechanism.
In the sampling, we employed optimizable convolutional kernels to simulate the upscale process.
arXiv Detail & Related papers (2025-02-09T02:05:33Z) - Improving Water Quality Time-Series Prediction in Hong Kong using Sentinel-2 MSI Data and Google Earth Engine Cloud Computing [2.186901738997927]
This study develops time-series models to predict chlorophyll-a (Chl-a), suspended solids (SS), and turbidity using Sentinel-2 satellite data and Google Earth Engine (GEE) in the coastal regions of Hong Kong.
arXiv Detail & Related papers (2024-08-26T04:31:55Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes [5.736700805381591]
Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets.
Here, we introduce the DeepExtremes database, tailored to map around heatwave and drought extreme impact.
It comprises over 40,000 spatially sampled small data cubes (i.e. minicubes) globally, with a spatial coverage of 2.5 by 2.5 km.
arXiv Detail & Related papers (2024-06-26T08:53:26Z) - M4Fog: A Global Multi-Regional, Multi-Modal, and Multi-Stage Dataset for Marine Fog Detection and Forecasting to Bridge Ocean and Atmosphere [34.63172821289592]
We present the most comprehensive marine fog detection and forecasting dataset to date, named M4Fog.
The dataset comprises 68,000 "superFog data cubes" along four dimensions: elements, latitude, longitude and time, with a temporal resolution of half an hour and a spatial resolution of 1 kilometer.
Considering practical applications, we have defined and explored three meaningful tracks with multi-metric evaluation systems.
arXiv Detail & Related papers (2024-06-19T08:11:07Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Learning of Sea Surface Height Interpolation from Multi-variate Simulated Satellite Observations [0.0]
We train an Attention-Based-Decoder deep learning network (textscabed) on this data.
We evaluate ABED reconstructions when trained using either supervised or unsupervised loss functions, with or without SST information.
Based on real SSH observations from the Ocean Data Challenge 2021, we find that this learning strategy, combined with the use of SST, decreases the root mean squared error by 24% compared to OI.
arXiv Detail & Related papers (2023-10-11T16:09:09Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - A Recommender System-Inspired Cloud Data Filling Scheme for
Satellite-based Coastal Observation [0.0]
This study is inspired by the success of data imputation methods in recommender systems that are designed for online shopping.
A numerical experiment was designed and conducted for a LandSat dataset with a range of synthetic cloud covers.
The recommender system-inspired matrix factorization algorithm called Funk-SVD showed superior performance in computational accuracy and efficiency.
arXiv Detail & Related papers (2021-11-27T18:26:11Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.