Enhancing Data Privacy in Large Language Models through Private Association Editing
- URL: http://arxiv.org/abs/2406.18221v3
- Date: Wed, 16 Oct 2024 13:31:05 GMT
- Title: Enhancing Data Privacy in Large Language Models through Private Association Editing
- Authors: Davide Venditti, Elena Sofia Ruzzetti, Giancarlo A. Xompero, Cristina Giannone, Andrea Favalli, Raniero Romagnoli, Fabio Massimo Zanzotto,
- Abstract summary: Large language models (LLMs) require a significant redesign in solutions to preserve privacy in data-intensive applications.
This paper introduces Private Association Editing (PAE) as a novel defense approach for private data leakage.
- Score: 1.078439500019266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) require a significant redesign in solutions to preserve privacy in data-intensive applications due to their text-generation capabilities. Indeed, LLMs tend to memorize and emit private information when maliciously prompted. In this paper, we introduce Private Association Editing (PAE) as a novel defense approach for private data leakage. PAE is designed to effectively remove Personally Identifiable Information (PII) without retraining the model. Experimental results demonstrate the effectiveness of PAE with respect to alternative baseline methods. We believe PAE will serve as a critical tool in the ongoing effort to protect data privacy in LLMs, encouraging the development of safer models for real-world applications.
Related papers
- Large Language Model Empowered Privacy-Protected Framework for PHI Annotation in Clinical Notes [28.117944094827596]
We introduce LPPA, an LLM-powered Privacy-Protected PHI framework for clinical notes.
This framework ensures privacy protection and high PHI annotation accuracy.
Extensive experiments demonstrate LPPA's effectiveness in accurately de-identifying private information.
arXiv Detail & Related papers (2025-04-22T03:18:36Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Text anonymization is crucial for sharing sensitive data while maintaining privacy.
Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models.
This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - Learning to Refuse: Towards Mitigating Privacy Risks in LLMs [6.685921135304385]
Large language models (LLMs) exhibit remarkable capabilities in understanding and generating natural language.
This study addresses the challenge of enabling LLMs to protect specific individuals' private data without the need for complete retraining.
We introduce the Name-Aware Unlearning Framework (NAUF) for Privacy Protection, which enables the model to learn which individuals' information should be protected.
arXiv Detail & Related papers (2024-07-14T03:05:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer [57.04801796205638]
Large Language Models (LLMs) have emerged as dominant tools for various tasks.
However, concerns surrounding data privacy present obstacles due to the tuned prompts' dependency on sensitive private information.
We present Differentially-Private Offsite Prompt Tuning (DP-OPT) to address this challenge.
arXiv Detail & Related papers (2023-11-27T02:01:10Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
This article proposes the conceptual model called PrivChatGPT, a privacy-generative model for LLMs.
PrivChatGPT consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data.
arXiv Detail & Related papers (2023-10-19T06:55:13Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Can Public Large Language Models Help Private Cross-device Federated Learning? [58.05449579773249]
We study (differentially) private federated learning (FL) of language models.
Public data has been used to improve privacy-utility trade-offs for both large and small language models.
We propose a novel distribution matching algorithm with theoretical grounding to sample public data close to private data distribution.
arXiv Detail & Related papers (2023-05-20T07:55:58Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - Selective Differential Privacy for Language Modeling [36.64464956102432]
Previous work has attempted to tackle this challenge by training RNN-based language models with differential privacy guarantees.
We propose a new privacy notion, selective differential privacy, to provide rigorous privacy guarantees on the sensitive portion of the data.
Experiments on both language modeling and dialog system building show that the proposed privacy-preserving mechanism achieves better utilities.
arXiv Detail & Related papers (2021-08-30T01:11:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.