Sunburst quantum Ising battery
- URL: http://arxiv.org/abs/2406.18258v1
- Date: Wed, 26 Jun 2024 11:10:09 GMT
- Title: Sunburst quantum Ising battery
- Authors: Akash Mitra, Shashi C. L. Srivastava,
- Abstract summary: We study the energy transfer process in the recently proposed sunburst quantum Ising model.
We show that in this model of the quantum battery, coupling between the battery and charger can be used to optimize the ergotropy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the energy transfer process in the recently proposed sunburst quantum Ising model, which consists of two interacting integrable systems: a transverse Ising chain with a very small transverse field and a finite number of external isolated qubits. We show that in this model of the quantum battery, coupling between the battery and charger can be used to optimize the ergotropy, which is the maximum amount of energy that can be extracted from the battery. At the same time, maximum charging power increases with the coupling strength, allowing for the simultaneous optimization of both ergotropy and charging power in the strong coupling limit. Furthermore, we show that both ergotropy and charging power are independent of the initial state of the charger.
Related papers
- Entanglement and energy transportation in the central-spin quantum battery [13.879580501607691]
Quantum battery exploits the principle of quantum mechanics to transport and store energy.
We study the energy transportation of the central-spin quantum battery, which is composed of $N_b$ spins serving as the battery cells, and surrounded by $N_c$ spins serving as the charger cells.
arXiv Detail & Related papers (2025-02-11T12:32:17Z) - Floquet driven long-range interactions induce super-extensive scaling in quantum battery [0.0]
Long-range (LR) interactions in conjunction with Floquet driving can improve the performance of quantum batteries.
Super-linear scaling in power results from increasing the strength of interaction compared to the transverse magnetic field.
arXiv Detail & Related papers (2024-12-01T18:10:59Z) - Nonequilibrium entanglement between levitated masses under optimal control [37.69303106863453]
We present a protocol that maximizes entanglement generation between two masses interacting directly through $1/rn$ potential.
The protocol combines optimal quantum control of continuously measured masses with their non-equilibrium dynamics, driven by a time-dependent interaction strength.
arXiv Detail & Related papers (2024-08-12T16:02:42Z) - Topological Quantum Batteries [0.3749861135832073]
We propose an innovative design for quantum batteries (QBs) that involves coupling two-level systems to a topological photonic waveguide.
We analytically explore the thermodynamic performances of QBs.
Our findings offer valuable guidance for improving quantum battery performance through structured reservoir engineering.
arXiv Detail & Related papers (2024-05-06T17:50:35Z) - Energetics of a pulsed quantum battery [0.0]
We present a transparent analytic model of a two-component quantum battery composed of a charger and an energy holder.
We discuss explicitly the optimal design of the battery in terms of the driving strength of the pulse, the coupling between the charger and the holder, and the inevitable energy loss into the environment.
We anticipate that our theory can act as a helpful guide for the nascent experimental work building and characterizing the first generation of truly quantum batteries.
arXiv Detail & Related papers (2024-03-29T12:54:53Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Energetics of the dissipative quantum oscillator [22.76327908349951]
We discuss some aspects of the energetics of a quantum Brownian particle placed in a harmonic trap.
Based on the fluctuation-dissipation theorem, we analyze two distinct notions of thermally-averaged energy.
We generalize our analysis to the case of the three-dimensional dissipative magneto-oscillator.
arXiv Detail & Related papers (2023-10-05T15:18:56Z) - Quantum enhancement of a single quantum battery by repeated interactions
with large spins [0.0]
We investigate coherent charging of a single quantum battery by repeated interactions with many-atom large spins.
For an initially empty battery, we derive analytical results of the average number of excitations and hence the charging power in the short-time limit.
arXiv Detail & Related papers (2022-09-26T08:12:17Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Optimal charging of a superconducting quantum battery [13.084212951440033]
We report the experimental realization of a quantum battery based on superconducting qubits.
Our model explores dark and bright states to achieve stable and powerful charging processes, respectively.
Our results pave the way for proposals of new superconducting circuits able to store extractable work for further usage.
arXiv Detail & Related papers (2021-08-09T18:53:07Z) - Ultrafast charging in a two-photon Dicke quantum battery [0.0]
We consider a collection of two level systems, such as qubits, embedded into a microwave cavity as a promising candidate for the realization of high power quantum batteries.
By solving a Dicke model with both single- and two-photon coupling we determine the range of parameters where the latter unconventional interaction dominates the dynamics of the system.
It is shown that the charging process is progressively faster by increasing the coupling from the weak to the ultra-strong regime.
arXiv Detail & Related papers (2020-09-21T12:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.