Nonequilibrium entanglement between levitated masses under optimal control
- URL: http://arxiv.org/abs/2408.06251v1
- Date: Mon, 12 Aug 2024 16:02:42 GMT
- Title: Nonequilibrium entanglement between levitated masses under optimal control
- Authors: Alexander N. Poddubny, Klemens Winkler, Benjamin A. Stickler, Uroš Delić, Markus Aspelmeyer, Anton V. Zasedatelev,
- Abstract summary: We present a protocol that maximizes entanglement generation between two masses interacting directly through $1/rn$ potential.
The protocol combines optimal quantum control of continuously measured masses with their non-equilibrium dynamics, driven by a time-dependent interaction strength.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a protocol that maximizes unconditional entanglement generation between two masses interacting directly through $1/r^{n}$ potential. The protocol combines optimal quantum control of continuously measured masses with their non-equilibrium dynamics, driven by a time-dependent interaction strength. Applied to a pair of optically trapped sub-micron particles coupled via electrostatic interaction, our protocol enables unconditional entanglement generation at the fundamental limit of the conditional state and with an order of magnitude smaller interaction between the masses compared to the existing steady-state approaches.
Related papers
- Steady-state entanglement of interacting masses in free space through optimal feedback control [0.0]
We employ linear quadratic Gaussian (LQG) control to engineer the phase space dynamics of the two masses.
We propose Einstein-Podolsky-Rosen (EPR)-type variance minimisation constraints for the feedback to facilitate unconditional entanglement generation.
arXiv Detail & Related papers (2024-08-14T12:14:58Z) - Qubit Analog with Polariton Superfluid in an Annular Trap [0.0]
We report on the experimental realization and characterization of a qubit analog with semiconductor exciton-polaritons.
In our system, a condensate of exciton-polaritonsfluid is confined by a spatially-patterned pump laser in an annular trap.
We observe coherent oscillations between a pair of counter-circulating superfluid vortex states of the polaritons coupled by elastic scattering off the laser-imprinted potential.
arXiv Detail & Related papers (2023-08-10T13:13:37Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Dynamics of a multipartite hybrid quantum system with beamsplitter,
dipole-dipole, and Ising interactions [0.0]
We make use of one such hybrid bipartite quantum model, with one subsystem made of a pair of qubits and another comprising a pair of oscillators.
Our basic model is the standard double Jaynes-Cummings system, which is known to support both entanglement transfer and entanglement sudden death.
We show that compared to the beamsplitter or dipole-dipole interaction, the Ising interaction can have a significant positive impact on entanglement sudden death and birth.
arXiv Detail & Related papers (2021-12-21T21:12:08Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Trapped-ion Fock state preparation by potential deformation [0.0]
We propose protocols to prepare highly excited energy eigenstates of a trapped ion in a harmonic trap.
The protocols rely on smoothly deforming the trapping potential between single and double well configurations.
arXiv Detail & Related papers (2020-01-24T11:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.