論文の概要: Improving EO Foundation Models with Confidence Assessment for enhanced Semantic segmentation
- arxiv url: http://arxiv.org/abs/2406.18279v2
- Date: Fri, 22 Nov 2024 08:45:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:47.359086
- Title: Improving EO Foundation Models with Confidence Assessment for enhanced Semantic segmentation
- Title(参考訳): セマンティックセグメンテーションの信頼性評価によるEOファンデーションモデルの改善
- Authors: Nikolaos Dionelis, Nicolas Longepe,
- Abstract要約: 我々は,拡張セマンティックセグメンテーション(CAS)モデルのための信頼度評価法を開発した。
セグメントレベルとピクセルレベルの両方の信頼度を評価し、ラベルと信頼スコアの両方を出力として提供する。
この研究は、特にセマンティックセグメンテーションの下流タスクにおけるEOファンデーションモデルの評価において重要な応用がある。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Confidence assessments of semantic segmentation algorithms are important. Ideally, deep learning models should have the ability to predict in advance whether their output is likely to be incorrect. Assessing the confidence levels of model predictions in Earth Observation (EO) classification is essential, as it can enhance semantic segmentation performance and help prevent further exploitation of the results in case of erroneous prediction. The model we developed, Confidence Assessment for enhanced Semantic segmentation (CAS), evaluates confidence at both the segment and pixel levels, providing both labels and confidence scores as output. Our model, CAS, identifies segments with incorrect predicted labels using the proposed combined confidence metric, refines the model, and enhances its performance. This work has significant applications, particularly in evaluating EO Foundation Models on semantic segmentation downstream tasks, such as land cover classification using Sentinel-2 satellite data. The evaluation results show that this strategy is effective and that the proposed model CAS outperforms other baseline models.
- Abstract(参考訳): セマンティックセグメンテーションアルゴリズムの信頼性評価が重要である。
理想的には、ディープラーニングモデルは、アウトプットが間違っているかを事前に予測する能力を持つべきです。
地球観測(EO)分類におけるモデル予測の信頼性レベルを評価することは、セマンティックセグメンテーションの性能を高め、誤予測の際の結果のさらなる活用を防ぐために不可欠である。
提案したモデルでは, セマンティックセグメンテーション(CAS)の信頼性評価を行い, セグメンテーションと画素レベルの信頼度を評価し, ラベルと信頼スコアの両方を出力として提供する。
我々のモデルCASは、提案した統合信頼度を用いて、誤った予測ラベルを持つセグメントを識別し、モデルを洗練し、その性能を向上させる。
この研究は、特にセンチネル2衛星データを用いた土地被覆分類など、セマンティックセグメンテーションの下流タスクにおけるEOファンデーションモデルの評価において重要な応用がある。
評価結果は,この戦略が有効であり,提案モデルCASが他のベースラインモデルより優れていることを示す。
関連論文リスト
- SASWISE-UE: Segmentation and Synthesis with Interpretable Scalable Ensembles for Uncertainty Estimation [6.082812294410541]
本稿では,医療深層学習モデルの解釈性向上を目的とした,効率的なサブモデルアンサンブルフレームワークを提案する。
不確実性マップを生成することにより、エンドユーザーがモデル出力の信頼性を評価することができる。
論文 参考訳(メタデータ) (2024-11-08T04:37:55Z) - Language Model Preference Evaluation with Multiple Weak Evaluators [78.53743237977677]
GED(Preference Graph Ensemble and Denoise)は、複数のモデルベースの評価器を活用して嗜好グラフを構築する新しいアプローチである。
GEDは,モデルランキング,応答選択,モデルアライメントタスクにおいて,ベースライン手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-14T01:57:25Z) - Beyond Exact Match: Semantically Reassessing Event Extraction by Large Language Models [69.38024658668887]
イベント抽出の現在の評価法はトークンレベルの正確な一致に依存している。
トークンレベルではなくセマンティックレベルでイベント抽出結果を正確に評価する自動評価フレームワークであるRAEEを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:54:01Z) - A Probabilistic Perspective on Unlearning and Alignment for Large Language Models [48.96686419141881]
大規模言語モデル(LLM)における最初の形式的確率的評価フレームワークを紹介する。
モデルの出力分布に関する高い確率保証を持つ新しい指標を導出する。
私たちのメトリクスはアプリケーションに依存しないので、デプロイ前にモデル機能についてより信頼性の高い見積を行うことができます。
論文 参考訳(メタデータ) (2024-10-04T15:44:23Z) - DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
本稿では,大規模言語モデル (LLM) と視覚言語モデル (VLM) の先行情報を利用した画像モデルの故障検出手法であるDECIDERを提案する。
DECIDERは一貫して最先端の故障検出性能を達成し、マシューズ相関係数全体のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-08-01T07:08:11Z) - Self-supervised co-salient object detection via feature correspondence at multiple scales [27.664016341526988]
本稿では,画像群における2段階の自己教師型手法を用いて,セグメンテーションアノテーションを必要とせず,共起性有色物体(CoSOD)を検出する手法を提案する。
我々は、画像間の局所パッチレベルの特徴対応を計算し、コサレント領域を検出する自己教師ネットワークを訓練する。
3つのCoSODベンチマークデータセットの実験では、我々のモデルは、対応する最先端モデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2024-03-17T06:21:21Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - Estimating Model Performance under Domain Shifts with Class-Specific
Confidence Scores [25.162667593654206]
不均衡なデータセットのパフォーマンス推定の枠組みの中で,クラスワイドキャリブレーションを導入する。
我々は、4つのタスクの実験を行い、提案した修正により、不均衡なデータセットの推定精度を一貫して改善する。
論文 参考訳(メタデータ) (2022-07-20T15:04:32Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
我々は、新しいノイズ強調型教師付きオートエンコーダ(NSAE)を用いて、特徴分布のより広範なバリエーションを捉えるようモデルに教える。
NSAEは入力を共同で再構築し、入力のラベルと再構成されたペアを予測することによってモデルを訓練する。
また、NSAE構造を利用して、より適応性を高め、対象領域の分類性能を向上させる2段階の微調整手順を提案する。
論文 参考訳(メタデータ) (2021-08-11T04:45:56Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。