論文の概要: AI-native Memory: A Pathway from LLMs Towards AGI
- arxiv url: http://arxiv.org/abs/2406.18312v4
- Date: Wed, 28 Aug 2024 08:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 20:38:57.892745
- Title: AI-native Memory: A Pathway from LLMs Towards AGI
- Title(参考訳): AIネイティブメモリ - LLMからAGIへの道
- Authors: Jingbo Shang, Zai Zheng, Jiale Wei, Xiang Ying, Felix Tao, Mindverse Team,
- Abstract要約: 大規模言語モデル(LLM)は、人工知能(AGI)の火花で世界を実証した。
我々は,メモリ統合によるLLMからAGIへの経路を構想する。
中間段階として、メモリは自然言語記述の形式になる可能性が高い。
- 参考スコア(独自算出の注目度): 25.19572633670963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated the world with the sparks of artificial general intelligence (AGI). One opinion, especially from some startups working on LLMs, argues that an LLM with nearly unlimited context length can realize AGI. However, they might be too optimistic about the long-context capability of (existing) LLMs -- (1) Recent literature has shown that their effective context length is significantly smaller than their claimed context length; and (2) Our reasoning-in-a-haystack experiments further demonstrate that simultaneously finding the relevant information from a long context and conducting (simple) reasoning is nearly impossible. In this paper, we envision a pathway from LLMs to AGI through the integration of \emph{memory}. We believe that AGI should be a system where LLMs serve as core processors. In addition to raw data, the memory in this system would store a large number of important conclusions derived from reasoning processes. Compared with retrieval-augmented generation (RAG) that merely processing raw data, this approach not only connects semantically related information closer, but also simplifies complex inferences at the time of querying. As an intermediate stage, the memory will likely be in the form of natural language descriptions, which can be directly consumed by users too. Ultimately, every agent/person should have its own large personal model, a deep neural network model (thus \emph{AI-native}) that parameterizes and compresses all types of memory, even the ones cannot be described by natural languages. Finally, we discuss the significant potential of AI-native memory as the transformative infrastructure for (proactive) engagement, personalization, distribution, and social in the AGI era, as well as the incurred privacy and security challenges with preliminary solutions.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人工知能(AGI)の火花で世界を実証している。
LLMに携わるスタートアップの中には、ほとんど無制限のコンテキストを持つLLMはAGIを実現することができる、という意見もある。
しかし, LLMの長期的文脈能力については, (1) 有効文脈長が主張する文脈長よりも著しく小さいこと, (2) 長期的文脈から関連情報を同時に発見し, 簡単な推論を行うことがほぼ不可能であること, など, 楽観的すぎるかもしれない。
本稿では,LLM から AGI への経路を,emph{Memory} の統合により想定する。
AGIはLLMがコアプロセッサとして機能するシステムであるべきだと考えています。
生データに加えて、このシステムのメモリは推論プロセスから派生した多くの重要な結論を格納する。
生データのみを処理する検索拡張生成(RAG)と比較すると,本手法は意味的関連情報をより緊密に接続するだけでなく,クエリ時に複雑な推論を単純化する。
中間段階として、メモリはおそらく自然言語記述の形で、ユーザも直接使用することができる。
究極的には、すべてのエージェント/人それぞれが独自の大きなパーソナルモデルを持ち、すべてのタイプのメモリをパラメータ化して圧縮するディープニューラルネットワークモデル(thus \emph{AI-native})を持つべきである。
最後に、AIネイティブメモリが、AGI時代の(積極的な)エンゲージメント、パーソナライゼーション、配布、ソーシャルの変革的基盤である可能性、および予備的なソリューションによる引き起こされたプライバシとセキュリティ上の課題について論じる。
関連論文リスト
- Large Language Models and the Extended Church-Turing Thesis [0.0]
本稿では,計算可能性理論と計算複雑性理論を用いて,大規模言語モデル(LLM)の計算能力について検討する。
固定的な(非適応的な) LLM は、計算量的に a, probably large, deterministic finite-state transducer と同値であることを示す。
本研究は,いくつかの関連分野と哲学の幅広い文脈における知見のメリットについて論じる。
論文 参考訳(メタデータ) (2024-09-11T03:09:55Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
本稿では,構造化および明示的な読み書きメモリモジュールを統合することで,知識能力を向上させる新しい手法であるMemLLMを紹介する。
実験の結果,MemLLMは言語モデリング全般,特に言語モデルにおいて,性能と解釈可能性を向上させることが示唆された。
私たちは MemLLM を,メモリ拡張による LLM の基盤化と現実化に向けた重要なステップと捉えています。
論文 参考訳(メタデータ) (2024-04-17T18:13:16Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Do LLMs Dream of Ontologies? [15.049502693786698]
大規模言語モデル(LLM)は、最近、自動テキスト理解と生成に革命をもたらした。
本稿では,汎用的な事前学習 LLM が,どの程度の知識を持つかを検討する。
論文 参考訳(メタデータ) (2024-01-26T15:10:23Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
自然言語ナラティブで指定されたソフト推論タスクの言語モデルを評価するデータセットである MuSR を紹介する。
このデータセットには2つの重要な特徴がある。まず、ニューロシンボリック合成-自然生成アルゴリズムによって生成される。
第二に、私たちのデータセットインスタンスは、実世界の推論の領域に対応する無料のテキスト物語です。
論文 参考訳(メタデータ) (2023-10-24T17:59:20Z) - RRAML: Reinforced Retrieval Augmented Machine Learning [10.94680155282906]
我々はReinforced Retrieval Augmented Machine Learning (RRAML)と呼ばれる新しいフレームワークを提案する。
RRAMLは、大規模な言語モデルの推論機能と、巨大なユーザが提供するデータベースから目的に構築された検索者によって取得された情報を統合する。
この論文で概説された研究課題は、AIの分野に大きな影響を与える可能性があると信じている。
論文 参考訳(メタデータ) (2023-07-24T13:51:19Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
In-context Autoencoder (ICAE) を提案し、長いコンテキストを短いメモリスロットに圧縮する。
ICAEは、大量のテキストデータに基づく自動符号化と言語モデリングの両方の目的を用いて、まず事前訓練を行う。
論文 参考訳(メタデータ) (2023-07-13T17:59:21Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。