論文の概要: General Reasoning Requires Learning to Reason from the Get-go
- arxiv url: http://arxiv.org/abs/2502.19402v1
- Date: Wed, 26 Feb 2025 18:51:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:56:52.688957
- Title: General Reasoning Requires Learning to Reason from the Get-go
- Title(参考訳): 一般推論は、ゲットゴーから学ぶことを必要とする
- Authors: Seungwook Han, Jyothish Pari, Samuel J. Gershman, Pulkit Agrawal,
- Abstract要約: 大規模言語モデル(LLM)は、実世界の素晴らしいユーティリティを実証している。
しかし、適応的かつ堅牢に推論できる能力は、脆弱なままだ。
我々は3つの重要な方向から知識と推論を解き放つことを提案する。
- 参考スコア(独自算出の注目度): 19.90997698310839
- License:
- Abstract: Large Language Models (LLMs) have demonstrated impressive real-world utility, exemplifying artificial useful intelligence (AUI). However, their ability to reason adaptively and robustly -- the hallmarks of artificial general intelligence (AGI) -- remains fragile. While LLMs seemingly succeed in commonsense reasoning, programming, and mathematics, they struggle to generalize algorithmic understanding across novel contexts. Our experiments with algorithmic tasks in esoteric programming languages reveal that LLM's reasoning overfits to the training data and is limited in its transferability. We hypothesize that the core issue underlying such limited transferability is the coupling of reasoning and knowledge in LLMs. To transition from AUI to AGI, we propose disentangling knowledge and reasoning through three key directions: (1) pretaining to reason using RL from scratch as an alternative to the widely used next-token prediction pretraining, (2) using a curriculum of synthetic tasks to ease the learning of a \textit{reasoning prior} for RL that can then be transferred to natural language tasks, and (3) learning more generalizable reasoning functions using a small context window to reduce exploiting spurious correlations between tokens. Such a reasoning system coupled with a trained retrieval system and a large external memory bank as a knowledge store can overcome several limitations of existing architectures at learning to reason in novel scenarios.
- Abstract(参考訳): 大規模言語モデル(LLM)は、人工知能(AUI)を実証し、目覚ましい実世界の実用性を実証している。
しかし、人工知能(AGI)の目印である適応的かつ堅牢な推論能力は、依然として脆弱である。
LLMは常識推論、プログラミング、数学に成功しているように見えるが、新しい文脈におけるアルゴリズム理解の一般化に苦慮している。
難解なプログラミング言語におけるアルゴリズムによる実験により, LLMの推論は学習データに過度に適合し, 伝達性に制限があることが判明した。
このような限定的な伝達可能性の根底にある問題は、LLMにおける推論と知識の結合である、という仮説を立てる。
AUI から AGI へ移行するためには,(1) 広く使われている次世代の予測事前学習の代替として,RL をスクラッチから推論すること,(2) 自然言語タスクに変換可能な RL の \textit{reasoning prior} の学習を容易にするために合成タスクのカリキュラムを利用すること,(3) トークン間の素早い相関を緩和するために,小さなコンテキストウィンドウを用いてより一般化可能な推論関数を学習すること,の3つの重要な方向から,知識と推論を分離することを提案する。
このような推論システムは、訓練された検索システムと知識ストアとしての大規模な外部メモリバンクとを組み合わさって、新しいシナリオの推論を学ぶ際に、既存のアーキテクチャのいくつかの制限を克服することができる。
関連論文リスト
- CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにまたがる印象的な機能を示している。
本稿では,LLMの複雑な論理的推論能力の体系的評価について述べる。
LLMは一般世界の知識の推論に優れるが、専門分野固有の知識では重大な課題に直面している。
論文 参考訳(メタデータ) (2024-07-30T05:40:32Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
本稿では,LSMによるプロンプトベース推論の急速に進展する分野について概説する。
我々の分類学は、多段階推論の生成、評価、制御の異なる方法を特定します。
我々は, 自己改善, 自己回帰, 推論過程のいくつかのメタ能力が, プロンプトの司法的利用によって可能であることを発見した。
論文 参考訳(メタデータ) (2024-07-16T08:49:35Z) - AI-native Memory: A Pathway from LLMs Towards AGI [25.19572633670963]
大規模言語モデル(LLM)は、人工知能(AGI)の火花で世界を実証した。
我々は,メモリ統合によるLLMからAGIへの経路を構想する。
中間段階として、メモリは自然言語記述の形式になる可能性が高い。
論文 参考訳(メタデータ) (2024-06-26T12:51:37Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
大規模言語モデル(LLM)に基づくKG上の複雑な推論スキーマを提案する。
任意の一階論理クエリを二分木分解により拡張し、LLMの推論能力を刺激する。
広く使われているデータセットに対する実験では、LACTは高度な手法よりも大幅に改善されている(平均+5.5% MRRスコア)。
論文 参考訳(メタデータ) (2024-05-02T18:12:08Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。