UniRec: A Dual Enhancement of Uniformity and Frequency in Sequential Recommendations
- URL: http://arxiv.org/abs/2406.18470v3
- Date: Tue, 16 Jul 2024 15:20:16 GMT
- Title: UniRec: A Dual Enhancement of Uniformity and Frequency in Sequential Recommendations
- Authors: Yang Liu, Yitong Wang, Chenyue Feng,
- Abstract summary: We propose UniRec, a novel bidirectional enhancement sequential recommendation method.
UniRec improves the representation of non-uniform sequences and less-frequent items.
To the best of our knowledge, UniRec is the first method to utilize the characteristics of uniformity and frequency for feature augmentation.
- Score: 13.654819858917332
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Representation learning in sequential recommendation is critical for accurately modeling user interaction patterns and improving recommendation precision. However, existing approaches predominantly emphasize item-to-item transitions, often neglecting the time intervals between interactions, which are closely related to behavior pattern changes. Additionally, broader interaction attributes, such as item frequency, are frequently overlooked. We found that both sequences with more uniform time intervals and items with higher frequency yield better prediction performance. Conversely, non-uniform sequences exacerbate user interest drift and less-frequent items are difficult to model due to sparse sampling, presenting unique challenges inadequately addressed by current methods. In this paper, we propose UniRec, a novel bidirectional enhancement sequential recommendation method. UniRec leverages sequence uniformity and item frequency to enhance performance, particularly improving the representation of non-uniform sequences and less-frequent items. These two branches mutually reinforce each other, driving comprehensive performance optimization in complex sequential recommendation scenarios. Additionally, we present a multidimensional time module to further enhance adaptability. To the best of our knowledge, UniRec is the first method to utilize the characteristics of uniformity and frequency for feature augmentation. Comparing with eleven advanced models across four datasets, we demonstrate that UniRec outperforms SOTA models significantly. The code is available at https://github.com/Linxi000/UniRec.
Related papers
- MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
We propose MISSRec, a multi-modal pre-training and transfer learning framework for sequential recommendation.
On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests.
On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation.
arXiv Detail & Related papers (2023-08-22T04:06:56Z) - Uniform Sequence Better: Time Interval Aware Data Augmentation for
Sequential Recommendation [16.00020821220671]
Sequential recommendation is an important task to predict the next-item to access based on a sequence of items.
Most existing works learn user preference as the transition pattern from the previous item to the next one, ignoring the time interval between these two items.
We propose to augment sequence data from the perspective of time interval, which is not studied in the literature.
arXiv Detail & Related papers (2022-12-16T03:13:43Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - ContrastVAE: Contrastive Variational AutoEncoder for Sequential
Recommendation [58.02630582309427]
We propose to incorporate contrastive learning into the framework of Variational AutoEncoders.
We introduce ContrastELBO, a novel training objective that extends the conventional single-view ELBO to two-view case.
We also propose ContrastVAE, a two-branched VAE model with contrastive regularization as an embodiment of ContrastELBO for sequential recommendation.
arXiv Detail & Related papers (2022-08-27T03:35:00Z) - Continuous-Time Sequential Recommendation with Temporal Graph
Collaborative Transformer [69.0621959845251]
We propose a new framework Temporal Graph Sequential Recommender (TGSRec) upon our defined continuous-time bi-partite graph.
TCT layer can simultaneously capture collaborative signals from both users and items, as well as considering temporal dynamics inside sequential patterns.
Empirical results on five datasets show that TGSRec significantly outperforms other baselines.
arXiv Detail & Related papers (2021-08-14T22:50:53Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Sequence Adaptation via Reinforcement Learning in Recommender Systems [8.909115457491522]
We propose the SAR model, which learns the sequential patterns and adjusts the sequence length of user-item interactions in a personalized manner.
In addition, we optimize a joint loss function to align the accuracy of the sequential recommendations with the expected cumulative rewards of the critic network.
Our experimental evaluation on four real-world datasets demonstrates the superiority of our proposed model over several baseline approaches.
arXiv Detail & Related papers (2021-07-31T13:56:46Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
We propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation.
We first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes framework, which enables our model to generate high-quality latent variables.
Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence.
arXiv Detail & Related papers (2021-03-19T09:01:14Z) - Random Feature Attention [69.4671822971207]
We propose RFA, a linear time and space attention that uses random feature methods to approximate the softmax function.
RFA can be used as a drop-in replacement for conventional softmax attention and offers a straightforward way of learning with recency bias through an optional gating mechanism.
Experiments on language modeling and machine translation demonstrate that RFA achieves similar or better performance compared to strong transformer baselines.
arXiv Detail & Related papers (2021-03-03T02:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.