Learnable Sequence Augmenter for Triplet Contrastive Learning in Sequential Recommendation
- URL: http://arxiv.org/abs/2503.20232v1
- Date: Wed, 26 Mar 2025 04:56:29 GMT
- Title: Learnable Sequence Augmenter for Triplet Contrastive Learning in Sequential Recommendation
- Authors: Wei Wang, Yujie Lin, Jianli Zhao, Moyan Zhang, Pengjie Ren, Xianye Ben, Yujun Li,
- Abstract summary: Learnable sequence Augmentor for triplet Contrastive Learning in sequential Recommendation (LACLRec)<n>We propose Learnable sequence Augmentor for triplet Contrastive Learning in sequential Recommendation (LACLRec)
- Score: 21.748796333731672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most existing contrastive learning-based sequential recommendation (SR) methods rely on random operations (e.g., crop, reorder, and substitute) to generate augmented sequences. These methods often struggle to create positive sample pairs that closely resemble the representations of the raw sequences, potentially disrupting item correlations by deleting key items or introducing noisy iterac, which misguides the contrastive learning process. To address this limitation, we propose Learnable sequence Augmentor for triplet Contrastive Learning in sequential Recommendation (LACLRec). Specifically, the self-supervised learning-based augmenter can automatically delete noisy items from sequences and insert new items that better capture item transition patterns, generating a higher-quality augmented sequence. Subsequently, we randomly generate another augmented sequence and design a ranking-based triplet contrastive loss to differentiate the similarities between the raw sequence, the augmented sequence from augmenter, and the randomly augmented sequence, providing more fine-grained contrastive signals. Extensive experiments on three real-world datasets demonstrate that both the sequence augmenter and the triplet contrast contribute to improving recommendation accuracy. LACLRec significantly outperforms the baseline model CL4SRec, and demonstrates superior performance compared to several state-of-the-art sequential recommendation algorithms.
Related papers
- UniRec: A Dual Enhancement of Uniformity and Frequency in Sequential Recommendations [13.654819858917332]
We propose UniRec, a novel bidirectional enhancement sequential recommendation method.
UniRec improves the representation of non-uniform sequences and less-frequent items.
To the best of our knowledge, UniRec is the first method to utilize the characteristics of uniformity and frequency for feature augmentation.
arXiv Detail & Related papers (2024-06-26T16:28:24Z) - Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
We propose a Context-aware Diffusion-based Contrastive Learning for Sequential Recommendation, named CaDiRec.<n>CaDiRec employs a context-aware diffusion model to generate alternative items for the given positions within a sequence.<n>We train the entire framework in an end-to-end manner, with shared item embeddings between the diffusion model and the recommendation model.
arXiv Detail & Related papers (2024-05-15T14:20:37Z) - Sequential Recommendation with Controllable Diversification: Representation Degeneration and Diversity [59.24517649169952]
We argue that the representation degeneration issue is the root cause of insufficient recommendation diversity in existing SR methods.
We propose a novel Singular sPectrum sMoothing regularization for Recommendation (SPMRec), which acts as a controllable surrogate to alleviate the degeneration.
arXiv Detail & Related papers (2023-06-21T02:42:37Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - ContrastVAE: Contrastive Variational AutoEncoder for Sequential
Recommendation [58.02630582309427]
We propose to incorporate contrastive learning into the framework of Variational AutoEncoders.
We introduce ContrastELBO, a novel training objective that extends the conventional single-view ELBO to two-view case.
We also propose ContrastVAE, a two-branched VAE model with contrastive regularization as an embodiment of ContrastELBO for sequential recommendation.
arXiv Detail & Related papers (2022-08-27T03:35:00Z) - Enhancing Sequential Recommendation with Graph Contrastive Learning [64.05023449355036]
This paper proposes a novel sequential recommendation framework, namely Graph Contrastive Learning for Sequential Recommendation (GCL4SR)
GCL4SR employs a Weighted Item Transition Graph (WITG), built based on interaction sequences of all users, to provide global context information for each interaction and weaken the noise information in the sequence data.
Experiments on real-world datasets demonstrate that GCL4SR consistently outperforms state-of-the-art sequential recommendation methods.
arXiv Detail & Related papers (2022-05-30T03:53:31Z) - Learnable Model Augmentation Self-Supervised Learning for Sequential
Recommendation [36.81597777126902]
We propose a Learnable Model Augmentation self-supervised learning for sequential Recommendation (LMA4Rec)
LMA4Rec first takes model augmentation as a supplementary method for data augmentation to generate views.
Next, self-supervised learning is used between the contrastive views to extract self-supervised signals from an original sequence.
arXiv Detail & Related papers (2022-04-21T14:30:56Z) - Improving Contrastive Learning with Model Augmentation [123.05700988581806]
The sequential recommendation aims at predicting the next items in user behaviors, which can be solved by characterizing item relationships in sequences.
Due to the data sparsity and noise issues in sequences, a new self-supervised learning (SSL) paradigm is proposed to improve the performance.
arXiv Detail & Related papers (2022-03-25T06:12:58Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.