論文の概要: Towards Compositionality in Concept Learning
- arxiv url: http://arxiv.org/abs/2406.18534v1
- Date: Wed, 26 Jun 2024 17:59:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 12:40:34.569803
- Title: Towards Compositionality in Concept Learning
- Title(参考訳): 概念学習における構成性に向けて
- Authors: Adam Stein, Aaditya Naik, Yinjun Wu, Mayur Naik, Eric Wong,
- Abstract要約: 既存の教師なし概念抽出手法では、構成的でない概念が見つかる。
これらの特性に従う概念を見つけるための合成概念抽出(CCE)を提案する。
CCEは、ベースラインよりも構成的な概念表現を見つけ、下流の4つの分類タスクでより良い精度を得る。
- 参考スコア(独自算出の注目度): 20.960438848942445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept-based interpretability methods offer a lens into the internals of foundation models by decomposing their embeddings into high-level concepts. These concept representations are most useful when they are compositional, meaning that the individual concepts compose to explain the full sample. We show that existing unsupervised concept extraction methods find concepts which are not compositional. To automatically discover compositional concept representations, we identify two salient properties of such representations, and propose Compositional Concept Extraction (CCE) for finding concepts which obey these properties. We evaluate CCE on five different datasets over image and text data. Our evaluation shows that CCE finds more compositional concept representations than baselines and yields better accuracy on four downstream classification tasks. Code and data are available at https://github.com/adaminsky/compositional_concepts .
- Abstract(参考訳): 概念に基づく解釈可能性法は、それらの埋め込みを高レベルな概念に分解することで基礎モデルの内部にレンズを提供する。
これらの概念表現は、構成的であるときに最も有用であり、つまり、個々の概念は完全なサンプルを説明するために構成される。
既存の教師なし概念抽出手法では、構成的でない概念が見つかる。
合成概念表現を自動的に発見するために,そのような表現の2つの顕著な性質を同定し,それらの性質に従う概念を見つけるための合成概念抽出(CCE)を提案する。
画像データとテキストデータに対して,CCEを5つの異なるデータセットで評価する。
評価の結果、CCEはベースラインよりも構成的な概念表現を多く見つけ、下流の4つの分類タスクにおいて精度が向上していることがわかった。
コードとデータはhttps://github.com/adaminsky/compositional_conceptsで公開されている。
関連論文リスト
- OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
創造的な視覚概念の生成は、しばしば関連する結果を生み出すために参照イメージ内の特定の概念からインスピレーションを引き出す。
我々は,創造的画像生成のための視覚的概念分離手法であるOmniPrismを提案する。
提案手法は,自然言語で案内される不整合概念表現を学習し,これらの概念を組み込むために拡散モデルを訓練する。
論文 参考訳(メタデータ) (2024-12-16T18:59:52Z) - CusConcept: Customized Visual Concept Decomposition with Diffusion Models [13.95568624067449]
ベクトルを埋め込んだカスタマイズされた視覚概念を抽出する2段階のフレームワークCusConceptを提案する。
最初の段階では、CusConceptは語彙誘導概念分解機構を採用している。
第2段階では、生成した画像の忠実度と品質を高めるために、共同概念の洗練を行う。
論文 参考訳(メタデータ) (2024-10-01T04:41:44Z) - Knowledge graphs for empirical concept retrieval [1.06378109904813]
概念に基づく説明可能なAIは、あるユーザの前提における複雑なモデルの理解を改善するツールとして期待されている。
本稿では,テキスト領域と画像領域の両方でユーザ主導のデータ収集を行うワークフローを提案する。
我々は,概念アクティベーションベクトル(CAV)と概念アクティベーション領域(CAR)の2つの概念ベース説明可能性手法を用いて,検索した概念データセットをテストする。
論文 参考訳(メタデータ) (2024-04-10T13:47:22Z) - Concept Bottleneck with Visual Concept Filtering for Explainable Medical
Image Classification [16.849592713393896]
概念ボトルネックモデル(CBM)は、人間の理解可能な概念を中間目標として利用することにより、解釈可能な画像分類を可能にする。
視覚的アクティベーションスコアは,視覚的手がかりを含むか否かを測定する。
計算された視覚的アクティベーションスコアは、見えない概念をフィルタリングするために使用され、結果として視覚的に意味のある概念がセットされる。
論文 参考訳(メタデータ) (2023-08-23T05:04:01Z) - ConceptBed: Evaluating Concept Learning Abilities of Text-to-Image
Diffusion Models [79.10890337599166]
本研究では,284のユニークな視覚概念と33Kの合成テキストプロンプトからなる大規模データセットであるConceptBedを紹介する。
我々は、対象、属性、スタイルのいずれかである視覚概念を評価し、また、構成性の4つの次元(計数、属性、関係、行動)を評価する。
私たちの結果は、概念を学ぶことと、既存のアプローチが克服に苦労する構成性を維持することのトレードオフを示しています。
論文 参考訳(メタデータ) (2023-06-07T18:00:38Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - Visual Concepts Tokenization [65.61987357146997]
本稿では,教師なしトランスフォーマーに基づく視覚概念トークン化フレームワーク VCT を提案する。
これらの概念トークンを得るためには、概念トークン間の自己注意なしで画像トークン層から視覚情報を抽出するために、クロスアテンションのみを用いる。
さらに,異なる概念トークンが独立した視覚概念を表現することを容易にするために,概念分離損失を提案する。
論文 参考訳(メタデータ) (2022-05-20T11:25:31Z) - Unsupervised Learning of Compositional Energy Concepts [70.11673173291426]
本稿では,概念を別個のエネルギー関数として発見し,表現するCOMETを提案する。
Cometは、統一されたフレームワークの下でのオブジェクトだけでなく、グローバルな概念も表現します。
論文 参考訳(メタデータ) (2021-11-04T17:46:12Z) - Visually Grounded Concept Composition [31.981204314287282]
我々はこれらを画像に合わせることによって、原始概念と全構成概念の両方の基礎を学ぶ。
そこで本研究では,テキストと画像のマッチング精度を指標として,合成学習がより堅牢なグラウンド化結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-09-29T00:38:58Z) - Interpretable Visual Reasoning via Induced Symbolic Space [75.95241948390472]
視覚的推論における概念誘導の問題,すなわち,画像に関連付けられた質問応答対から概念とその階層的関係を同定する。
我々はまず,オブジェクトレベルの視覚的特徴を持つ視覚的推論タスクを実行するために,オブジェクト指向合成注意モデル(OCCAM)という新しいフレームワークを設計する。
そこで我々は,対象の視覚的特徴と質問語の間の注意パターンから手がかりを用いて,対象と関係の概念を誘導する手法を考案した。
論文 参考訳(メタデータ) (2020-11-23T18:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。