論文の概要: Knowledge graphs for empirical concept retrieval
- arxiv url: http://arxiv.org/abs/2404.07008v1
- Date: Wed, 10 Apr 2024 13:47:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 14:31:02.976832
- Title: Knowledge graphs for empirical concept retrieval
- Title(参考訳): 経験的概念検索のための知識グラフ
- Authors: Lenka Tětková, Teresa Karen Scheidt, Maria Mandrup Fogh, Ellen Marie Gaunby Jørgensen, Finn Årup Nielsen, Lars Kai Hansen,
- Abstract要約: 概念に基づく説明可能なAIは、あるユーザの前提における複雑なモデルの理解を改善するツールとして期待されている。
本稿では,テキスト領域と画像領域の両方でユーザ主導のデータ収集を行うワークフローを提案する。
我々は,概念アクティベーションベクトル(CAV)と概念アクティベーション領域(CAR)の2つの概念ベース説明可能性手法を用いて,検索した概念データセットをテストする。
- 参考スコア(独自算出の注目度): 1.06378109904813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept-based explainable AI is promising as a tool to improve the understanding of complex models at the premises of a given user, viz.\ as a tool for personalized explainability. An important class of concept-based explainability methods is constructed with empirically defined concepts, indirectly defined through a set of positive and negative examples, as in the TCAV approach (Kim et al., 2018). While it is appealing to the user to avoid formal definitions of concepts and their operationalization, it can be challenging to establish relevant concept datasets. Here, we address this challenge using general knowledge graphs (such as, e.g., Wikidata or WordNet) for comprehensive concept definition and present a workflow for user-driven data collection in both text and image domains. The concepts derived from knowledge graphs are defined interactively, providing an opportunity for personalization and ensuring that the concepts reflect the user's intentions. We test the retrieved concept datasets on two concept-based explainability methods, namely concept activation vectors (CAVs) and concept activation regions (CARs) (Crabbe and van der Schaar, 2022). We show that CAVs and CARs based on these empirical concept datasets provide robust and accurate explanations. Importantly, we also find good alignment between the models' representations of concepts and the structure of knowledge graphs, i.e., human representations. This supports our conclusion that knowledge graph-based concepts are relevant for XAI.
- Abstract(参考訳): 概念ベースの説明可能なAIは、あるユーザの前提であるvizにおける複雑なモデルの理解を改善するツールとして期待されている。
パーソナライズされた説明可能性のためのツールとして。
概念に基づく説明可能性法の重要なクラスは、TCAVアプローチ(Kim et al , 2018)のように、実証的に定義された概念を用いて構成される。
概念の形式的定義や運用化を避けることがユーザにアピールされるが、関連する概念データセットを確立することは困難である。
本稿では、包括的概念定義のための一般知識グラフ(例えば、WikidataやWordNet)を用いてこの問題に対処し、テキストと画像ドメインの両方において、ユーザ主導のデータ収集のためのワークフローを提示する。
知識グラフから導かれる概念は対話的に定義され、パーソナライゼーションの機会を与え、その概念がユーザの意図を反映することを保証する。
本研究では,概念アクティベーションベクトル(CAV)と概念アクティベーション領域(CAR)の2つの概念ベース説明可能性手法を用いて,検索した概念データセットを検証した(Crabbe and van der Schaar, 2022)。
これらの経験的概念データセットに基づくCAVとCARが、堅牢で正確な説明を提供することを示す。
重要なことに、モデルの概念表現と知識グラフの構造、すなわち人間の表現との整合性も良好である。
これは知識グラフに基づく概念がXAIに関係しているという私たちの結論を支持します。
関連論文リスト
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Towards Compositionality in Concept Learning [20.960438848942445]
既存の教師なし概念抽出手法では、構成的でない概念が見つかる。
これらの特性に従う概念を見つけるための合成概念抽出(CCE)を提案する。
CCEは、ベースラインよりも構成的な概念表現を見つけ、下流の4つの分類タスクでより良い精度を得る。
論文 参考訳(メタデータ) (2024-06-26T17:59:30Z) - Explaining Explainability: Understanding Concept Activation Vectors [35.37586279472797]
最近の解釈可能性法では、概念に基づく説明を用いて、ディープラーニングモデルの内部表現を、人間が慣れ親しんだ言語に翻訳する。
これは、ニューラルネットワークの表現空間にどの概念が存在するかを理解する必要がある。
本研究では,概念活性化ベクトル(Concept Activation Vectors, CAV)の3つの特性について検討する。
本研究では,これらの特性の存在を検出するためのツールを導入し,それらが引き起こした説明にどのように影響するかを把握し,その影響を最小限に抑えるための推奨事項を提供する。
論文 参考訳(メタデータ) (2024-04-04T17:46:20Z) - Simple Mechanisms for Representing, Indexing and Manipulating Concepts [46.715152257557804]
我々は、概念の具体的な表現やシグネチャを生成するために、そのモーメント統計行列を見ることで概念を学ぶことができると論じる。
概念が交差しているとき、概念のシグネチャを使用して、関連する多くの相互交差した概念の共通テーマを見つけることができる。
論文 参考訳(メタデータ) (2023-10-18T17:54:29Z) - ConceptBed: Evaluating Concept Learning Abilities of Text-to-Image
Diffusion Models [79.10890337599166]
本研究では,284のユニークな視覚概念と33Kの合成テキストプロンプトからなる大規模データセットであるConceptBedを紹介する。
我々は、対象、属性、スタイルのいずれかである視覚概念を評価し、また、構成性の4つの次元(計数、属性、関係、行動)を評価する。
私たちの結果は、概念を学ぶことと、既存のアプローチが克服に苦労する構成性を維持することのトレードオフを示しています。
論文 参考訳(メタデータ) (2023-06-07T18:00:38Z) - Concept-Based Explanations for Tabular Data [0.0]
ディープニューラルネットワーク(DNN)のための概念に基づく説明可能性を提案する。
本研究では,人間レベルの直観に合致する解釈可能性を示す手法の有効性を示す。
また,DNNのどの層がどの層を学習したのかを定量化したTCAVに基づく公平性の概念を提案する。
論文 参考訳(メタデータ) (2022-09-13T02:19:29Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and
Acquisition at Inference Time [49.067846763204564]
人間は、ゼロショットで新しい視覚概念を認識し、獲得する驚くべき能力を持っている。
ゼロショット概念認識・獲得(ZeroC)は,ゼロショット方式で新規概念を認識・取得できる,ニューロシンボリックアーキテクチャである。
論文 参考訳(メタデータ) (2022-06-30T06:24:45Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
概念発見は、深層学習の専門家とモデルエンドユーザーの間のギャップを埋めるために重要である。
現在のアプローチには、手作りの概念データセットと、それを潜在空間方向に変換することが含まれる。
本研究では,複数の仮説テストに基づく意味ある概念のユーザ発見と,インタラクティブな可視化に関する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-09T22:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。