Enhancing Medical Imaging with GANs Synthesizing Realistic Images from Limited Data
- URL: http://arxiv.org/abs/2406.18547v1
- Date: Wed, 22 May 2024 23:32:24 GMT
- Title: Enhancing Medical Imaging with GANs Synthesizing Realistic Images from Limited Data
- Authors: Yinqiu Feng, Bo Zhang, Lingxi Xiao, Yutian Yang, Tana Gegen, Zexi Chen,
- Abstract summary: We introduce an innovative method for synthesizing medical images using generative adversarial networks (GANs)
Our proposed GANs method demonstrates the capability to produce realistic synthetic images even when trained on a limited quantity of real medical image data.
- Score: 3.7304751266416747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this research, we introduce an innovative method for synthesizing medical images using generative adversarial networks (GANs). Our proposed GANs method demonstrates the capability to produce realistic synthetic images even when trained on a limited quantity of real medical image data, showcasing commendable generalization prowess. To achieve this, we devised a generator and discriminator network architecture founded on deep convolutional neural networks (CNNs), leveraging the adversarial training paradigm for model optimization. Through extensive experimentation across diverse medical image datasets, our method exhibits robust performance, consistently generating synthetic images that closely emulate the structural and textural attributes of authentic medical images.
Related papers
- Medical Imaging Complexity and its Effects on GAN Performance [1.776717121506676]
Medical image synthesis via generative adversarial networks (GANs) emerged as a powerful method for synthetically generating photo-realistic images.
We experimentally establish benchmarks that measure the relationship between a sample dataset size and the fidelity of the generated images.
We conduct experiments with two state-of-the-art GANs, StyleGAN 3 and SPADE-GAN, trained on multiple medical imaging datasets with variable sample sizes.
arXiv Detail & Related papers (2024-10-23T15:28:25Z) - HistoSPACE: Histology-Inspired Spatial Transcriptome Prediction And Characterization Engine [0.0]
HistoSPACE model explore the diversity of histological images available with ST data to extract molecular insights from tissue image.
Model demonstrates significant efficiency compared to contemporary algorithms, revealing a correlation of 0.56 in leave-one-out cross-validation.
arXiv Detail & Related papers (2024-08-07T07:12:52Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - This Intestine Does Not Exist: Multiscale Residual Variational
Autoencoder for Realistic Wireless Capsule Endoscopy Image Generation [7.430724826764835]
A novel Variational Autoencoder architecture is proposed, namely "This Intestine Does not Exist" (TIDE)
The proposed architecture comprises multiscale feature extraction convolutional blocks and residual connections, which enable the generation of high-quality and diverse datasets.
Contrary to the current approaches, which are oriented towards the augmentation of the available datasets, this study demonstrates that using TIDE, real WCE datasets can be fully substituted.
arXiv Detail & Related papers (2023-02-04T11:49:38Z) - Subject-Specific Lesion Generation and Pseudo-Healthy Synthesis for
Multiple Sclerosis Brain Images [1.7328025136996081]
We present a novel generative method for modelling the local lesion characteristics.
It can generate synthetic lesions on healthy images and synthesize subject-specific pseudo-healthy images from pathological images.
The proposed method can be used as a data augmentation module to generate synthetic images for training brain image segmentation networks.
arXiv Detail & Related papers (2022-08-03T15:12:55Z) - Pathology-Aware Generative Adversarial Networks for Medical Image
Augmentation [0.22843885788439805]
Generative Adversarial Networks (GANs) can generate realistic but novel samples, and thus effectively cover the real image distribution.
This thesis contains four GAN projects aiming to present such novel applications' clinical relevance in collaboration with physicians.
arXiv Detail & Related papers (2021-06-03T15:08:14Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
We propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis.
In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality.
A multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality.
arXiv Detail & Related papers (2020-02-11T08:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.