Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation
- URL: http://arxiv.org/abs/2410.16063v1
- Date: Mon, 21 Oct 2024 14:44:08 GMT
- Title: Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation
- Authors: Ruting Chi, Zhiyi Huang, Yuexing Han,
- Abstract summary: The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information.
First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples.
Second, by integrating the features of text and image, more accurate classification results can be obtained.
- Score: 1.3157419797035321
- License:
- Abstract: Small sample instance segmentation is a very challenging task, and many existing methods follow the training strategy of meta-learning which pre-train models on support set and fine-tune on query set. The pre-training phase, which is highly task related, requires a significant amount of additional training time and the selection of datasets with close proximity to ensure effectiveness. The article proposes a novel small sample instance segmentation solution from the perspective of maximizing the utilization of existing information without increasing annotation burden and training costs. The proposed method designs two modules to address the problems encountered in small sample instance segmentation. First, it helps the model fully utilize unlabeled data by learning to generate pseudo labels, increasing the number of available samples. Second, by integrating the features of text and image, more accurate classification results can be obtained. These two modules are suitable for box-free and box-dependent frameworks. In the way, the proposed method not only improves the performance of small sample instance segmentation, but also greatly reduce reliance on pre-training. We have conducted experiments in three datasets from different scenes: on land, underwater and under microscope. As evidenced by our experiments, integrated image-text corrects the confidence of classification, and pseudo labels help the model obtain preciser masks. All the results demonstrate the effectiveness and superiority of our method.
Related papers
- Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - Two-Step Active Learning for Instance Segmentation with Uncertainty and
Diversity Sampling [20.982992381790034]
We propose a post-hoc active learning algorithm that integrates uncertainty-based sampling with diversity-based sampling.
Our proposed algorithm is not only simple and easy to implement, but it also delivers superior performance on various datasets.
arXiv Detail & Related papers (2023-09-28T03:40:30Z) - Incremental Learning on Food Instance Segmentation [31.60448022949561]
This paper proposes an incremental learning framework to optimize the model performance given a limited data labelling budget.
The power of the framework is a novel difficulty assessment model, which forecasts how challenging an unlabelled sample is to the latest trained instance segmentation model.
On four large-scale food datasets, our proposed framework outperforms current incremental learning benchmarks and achieves competitive performance with the model trained on fully annotated samples.
arXiv Detail & Related papers (2023-06-28T04:17:16Z) - AdaSelection: Accelerating Deep Learning Training through Data
Subsampling [27.46630703428186]
We introduce AdaSelection, an adaptive sub-sampling method to identify the most informative sub-samples within each minibatch.
Compared with industry-standard baselines, AdaSelection consistently displays superior performance.
arXiv Detail & Related papers (2023-06-19T07:01:28Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
We present a novel data-efficient semi-supervised framework to improve the generalization of image captioning models.
Our proposed method trains a captioner to learn from a paired data and to progressively associate unpaired data.
Our extensive and comprehensive empirical results both on (1) image-based and (2) dense region-based captioning datasets followed by comprehensive analysis on the scarcely-paired dataset.
arXiv Detail & Related papers (2023-01-26T15:25:43Z) - Style Curriculum Learning for Robust Medical Image Segmentation [62.02435329931057]
Deep segmentation models often degrade due to distribution shifts in image intensities between the training and test data sets.
We propose a novel framework to ensure robust segmentation in the presence of such distribution shifts.
arXiv Detail & Related papers (2021-08-01T08:56:24Z) - Learning to Track Instances without Video Annotations [85.9865889886669]
We introduce a novel semi-supervised framework by learning instance tracking networks with only a labeled image dataset and unlabeled video sequences.
We show that even when only trained with images, the learned feature representation is robust to instance appearance variations.
In addition, we integrate this module into single-stage instance segmentation and pose estimation frameworks.
arXiv Detail & Related papers (2021-04-01T06:47:41Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Efficient Deep Representation Learning by Adaptive Latent Space Sampling [16.320898678521843]
Supervised deep learning requires a large amount of training samples with annotations, which are expensive and time-consuming to obtain.
We propose a novel training framework which adaptively selects informative samples that are fed to the training process.
arXiv Detail & Related papers (2020-03-19T22:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.