論文の概要: Research on Driver Facial Fatigue Detection Based on Yolov8 Model
- arxiv url: http://arxiv.org/abs/2406.18575v1
- Date: Tue, 4 Jun 2024 05:45:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 05:50:36.645511
- Title: Research on Driver Facial Fatigue Detection Based on Yolov8 Model
- Title(参考訳): Yolov8モデルに基づくドライバ顔面疲労検出に関する研究
- Authors: Chang Zhou, Yang Zhao, Shaobo Liu, Yi Zhao, Xingchen Li, Chiyu Cheng,
- Abstract要約: 疲労運転検出技術(特にYOLOv8ディープラーニングモデルに基づくもの)は、効果的な予防策として広く研究され応用されている。
本研究の目的は,疲労運転の防止と検出のための堅牢な技術ソリューションを提供することであり,交通事故の低減と生活保護に大きく貢献することである。
- 参考スコア(独自算出の注目度): 33.19883571658716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a society where traffic accidents frequently occur, fatigue driving has emerged as a grave issue. Fatigue driving detection technology, especially those based on the YOLOv8 deep learning model, has seen extensive research and application as an effective preventive measure. This paper discusses in depth the methods and technologies utilized in the YOLOv8 model to detect driver fatigue, elaborates on the current research status both domestically and internationally, and systematically introduces the processing methods and algorithm principles for various datasets. This study aims to provide a robust technical solution for preventing and detecting fatigue driving, thereby contributing significantly to reducing traffic accidents and safeguarding lives.
- Abstract(参考訳): 交通事故が頻発する社会では、疲労運転が重大な問題となっている。
疲労運転検出技術(特にYOLOv8ディープラーニングモデルに基づくもの)は、効果的な予防策として広く研究され応用されている。
本稿では、ドライバーの疲労を検出するためにYOLOv8モデルで使用される方法と技術について深く論じ、国内および国際両方の研究状況について詳述し、様々なデータセットの処理方法とアルゴリズム原則を体系的に紹介する。
本研究の目的は,疲労運転の防止と検出のための堅牢な技術ソリューションを提供することであり,交通事故の低減と生活保護に大きく貢献することである。
関連論文リスト
- Cutting-Edge Detection of Fatigue in Drivers: A Comparative Study of Object Detection Models [0.0]
本研究は, YOLOv5, YOLOv6, YOLOv7, YOLOv8を含む, 近代的な物体検出アルゴリズムに基づく疲労検出システムの開発について述べる。
これらのモデルの性能を比較することで,運転者の疲労関連行動のリアルタイム検出の有効性を評価する。
この研究は、環境変動や検出精度といった課題に対処し、リアルタイム検出を強化するロードマップを提案する。
論文 参考訳(メタデータ) (2024-10-19T08:06:43Z) - Research on target detection method of distracted driving behavior based on improved YOLOv8 [6.405098280736171]
本研究では,BOTNetモジュール,GAMアテンション機構,EIoU損失関数を統合することで,従来のYOLOv8モデルに基づく改良されたYOLOv8検出手法を提案する。
実験の結果, 精度は99.4%であり, 検出速度, 精度ともに良好であった。
論文 参考訳(メタデータ) (2024-07-02T00:43:41Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Using Visual and Vehicular Sensors for Driver Behavior Analysis: A
Survey [0.0]
危険ドライバーは米国での死亡事故の70%を占めている。
本稿では,視覚・車体データを用いた運転者の行動分析手法について検討する。
論文 参考訳(メタデータ) (2023-08-25T14:33:59Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Vision Transformers and YoloV5 based Driver Drowsiness Detection
Framework [0.0]
本稿では,視覚変換器とヨーロV5アーキテクチャをベースとした,ドライバの眠気認識のための新しいフレームワークを提案する。
関心領域抽出を目的とした顔抽出のためのヨロV5事前学習アーキテクチャを提案する。
さらなる評価のために、提案されたフレームワークは、様々な光環境における39人の参加者のカスタムデータセットでテストされ、95.5%の精度を達成した。
論文 参考訳(メタデータ) (2022-09-03T11:37:41Z) - Modelling and Detection of Driver's Fatigue using Ontology [60.090278944561184]
道路事故は世界8大死因である。
様々な要因がドライバーの疲労の原因となっている。
ドライバの疲労検出に関するオントロジー知識とルールをインテリジェントシステムに統合する必要がある。
論文 参考訳(メタデータ) (2022-08-31T08:42:28Z) - Drivers' attention detection: a systematic literature review [62.997667081978825]
多くの要因が運転中の注意散らしに寄与しうるが、それは物体や事象が生理的状態、つまり眠気や疲労に結びつくためであり、運転者が注意をそらすことができないからである。
技術進歩により、現実の状況における注意を検知する多くのソリューションの開発と応用が可能となった。
本研究は,車輪の運転者の注意を検知するための方法と基準について,システマティック文献レビュー(Systematic Literature Review)を提示する。
論文 参考訳(メタデータ) (2022-04-06T11:36:40Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - A Review on Drivers Red Light Running Behavior Predictions and
Technology Based Countermeasures [2.946307679627299]
本稿では,赤信号の動作予測手法と技術に基づく対策について概説する。
本研究の主な焦点は、赤信号のランニングとストップとゴーの動作を対象とする2つの文献ストリームに関する総合的なレビューを提供することである。
論文 参考訳(メタデータ) (2020-08-15T14:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。