Petal-X: Human-Centered Visual Explanations to Improve Cardiovascular Risk Communication
- URL: http://arxiv.org/abs/2406.18690v1
- Date: Wed, 26 Jun 2024 18:48:50 GMT
- Title: Petal-X: Human-Centered Visual Explanations to Improve Cardiovascular Risk Communication
- Authors: Diego Rojo, Houda Lamqaddam, Lucija Gosak, Katrien Verbert,
- Abstract summary: This work describes the design and implementation of Petal-X, a novel tool to support clinician-patient shared decision-making.
Petal-X relies on a novel visualization, Petal Product Plots, and a tailor-made global surrogate model of SCORE2, whose fidelity is comparable to that of the GSCs used in clinical practice.
- Score: 1.4613744540785565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases (CVDs), the leading cause of death worldwide, can be prevented in most cases through behavioral interventions. Therefore, effective communication of CVD risk and projected risk reduction by risk factor modification plays a crucial role in reducing CVD risk at the individual level. However, despite interest in refining risk estimation with improved prediction models such as SCORE2, the guidelines for presenting these risk estimations in clinical practice remained essentially unchanged in the last few years, with graphical score charts (GSCs) continuing to be one of the prevalent systems. This work describes the design and implementation of Petal-X, a novel tool to support clinician-patient shared decision-making by explaining the CVD risk contributions of different factors and facilitating what-if analysis. Petal-X relies on a novel visualization, Petal Product Plots, and a tailor-made global surrogate model of SCORE2, whose fidelity is comparable to that of the GSCs used in clinical practice. We evaluated Petal-X compared to GSCs in a controlled experiment with 88 healthcare students, all but one with experience with chronic patients. The results show that Petal-X outperforms GSC in critical tasks, such as comparing the contribution to the patient's 10-year CVD risk of each modifiable risk factor, without a significant loss of perceived transparency, trust, or intent to use. Our study provides an innovative approach to the visualization and explanation of risk in clinical practice that, due to its model-agnostic nature, could continue to support next-generation artificial intelligence risk assessment models.
Related papers
- A Joint Representation Using Continuous and Discrete Features for Cardiovascular Diseases Risk Prediction on Chest CT Scans [12.652540031719571]
We propose a novel joint representation that integrates discrete quantitative biomarkers and continuous deep features extracted from chest CT scans.
Our method substantially improves CVD risk predictive performance and offers individual contribution analysis of each biomarker.
arXiv Detail & Related papers (2024-10-24T10:06:45Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.
Our research identifies two critical latent factors affecting RAG's confidence in its predictions.
We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Improving Opioid Use Disorder Risk Modelling through Behavioral and Genetic Feature Integration [3.524972282521988]
Opioids are an effective analgesic for acute and chronic pain, but carry a risk of addiction leading to millions of opioid use disorder (OUD) cases and tens of thousands of premature deaths in the United States yearly.
We develop an experimental design and computational methods that combine genetic variants associated with OUD with behavioral features extracted from GPS and Wi-Fitemporal coordinates to assess OUD risk.
arXiv Detail & Related papers (2023-09-19T17:01:28Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - COVID-Net CXR-S: Deep Convolutional Neural Network for Severity
Assessment of COVID-19 Cases from Chest X-ray Images [74.77272804752306]
We introduce COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-CoV-2 positive patient based on a CXR image of the patient's chest.
We leveraged transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a multinational cohort of over 15,000 patient cases into a custom network architecture for severity assessment.
The proposed COVID-Net CXR-S has potential to be a powerful tool for computer-aided severity assessment of CXR images of COVID-19 positive patients.
arXiv Detail & Related papers (2021-05-01T14:15:12Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Personalized Cardiovascular Disease Risk Mitigation via Longitudinal
Inverse Classification [3.5255730400158756]
Cardiovascular disease (CVD) is a serious illness affecting millions world-wide and is the leading cause of death in the US.
Recent years have seen tremendous growth in the area of personalized medicine, a field of medicine that places the patient at the center of the medical decision-making and treatment process.
Many CVD-focused personalized medicine innovations focus on genetic biomarkers, which provide person-specific CVD insights at the genetic level, but do not focus on the practical steps a patient could take to mitigate their risk of CVD development.
arXiv Detail & Related papers (2020-11-16T20:23:01Z) - An explainable XGBoost-based approach towards assessing the risk of
cardiovascular disease in patients with Type 2 Diabetes Mellitus [1.761604268733064]
Cardiovascular Disease (CVD) is an important cause of disability and death among individuals with Diabetes Mellitus (DM)
The aim of the present study is to develop and evaluate an explainable personalized risk prediction model for the fatal or non-fatal CVD incidence in T2DM individuals.
arXiv Detail & Related papers (2020-09-14T12:19:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.