Conformalized Link Prediction on Graph Neural Networks
- URL: http://arxiv.org/abs/2406.18763v2
- Date: Thu, 18 Jul 2024 22:06:38 GMT
- Title: Conformalized Link Prediction on Graph Neural Networks
- Authors: Tianyi Zhao, Jian Kang, Lu Cheng,
- Abstract summary: Graph Neural Networks (GNNs) excel in diverse tasks, yet their applications in high-stakes domains are often hampered by unreliable predictions.
We introduce a distribution-free and model-agnostic uncertainty quantification approach to construct a predictive interval with a statistical guarantee for GNN-based link prediction.
- Score: 8.807684750444626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) excel in diverse tasks, yet their applications in high-stakes domains are often hampered by unreliable predictions. Although numerous uncertainty quantification methods have been proposed to address this limitation, they often lack \textit{rigorous} uncertainty estimates. This work makes the first attempt to introduce a distribution-free and model-agnostic uncertainty quantification approach to construct a predictive interval with a statistical guarantee for GNN-based link prediction. We term it as \textit{conformalized link prediction.} Our approach builds upon conformal prediction (CP), a framework that promises to construct statistically robust prediction sets or intervals. We first theoretically and empirically establish a permutation invariance condition for the application of CP in link prediction tasks, along with an exact test-time coverage. Leveraging the important structural information in graphs, we then identify a novel and crucial connection between a graph's adherence to the power law distribution and the efficiency of CP. This insight leads to the development of a simple yet effective sampling-based method to align the graph structure with a power law distribution prior to the standard CP procedure. Extensive experiments demonstrate that for conformalized link prediction, our approach achieves the desired marginal coverage while significantly improving the efficiency of CP compared to baseline methods.
Related papers
- RoCP-GNN: Robust Conformal Prediction for Graph Neural Networks in Node-Classification [0.0]
Graph Neural Networks (GNNs) have emerged as powerful tools for predicting outcomes in graph-structured data.
One way to address this issue is by providing prediction sets that contain the true label with a predefined probability margin.
We propose a novel approach termed Robust Conformal Prediction for GNNs (RoCP-GNN)
Our approach robustly predicts outcomes with any predictive GNN model while quantifying the uncertainty in predictions within the realm of graph-based semi-supervised learning (SSL)
arXiv Detail & Related papers (2024-08-25T12:51:19Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data.
Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption.
arXiv Detail & Related papers (2024-06-08T08:56:47Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data.
Despite their efficacy, GNNs have limited ability to provide robust uncertainty estimates.
We propose Conditional Shift Robust (CondSR) conformal prediction for GNNs.
arXiv Detail & Related papers (2024-05-20T11:47:31Z) - Variational Disentangled Graph Auto-Encoders for Link Prediction [10.390861526194662]
This paper proposes a novel framework with two variants, the disentangled graph auto-encoder (DGAE) and the variational disentangled graph auto-encoder (VDGAE)
The proposed framework infers the latent factors that cause edges in the graph and disentangles the representation into multiple channels corresponding to unique latent factors.
arXiv Detail & Related papers (2023-06-20T06:25:05Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning (FL) is a machine learning framework where many clients collaboratively train models.
We develop a new conformal prediction method based on quantile regression and take into account privacy constraints.
arXiv Detail & Related papers (2023-06-08T11:54:58Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - Predicting Deep Neural Network Generalization with Perturbation Response
Curves [58.8755389068888]
We propose a new framework for evaluating the generalization capabilities of trained networks.
Specifically, we introduce two new measures for accurately predicting generalization gaps.
We attain better predictive scores than the current state-of-the-art measures on a majority of tasks in the Predicting Generalization in Deep Learning (PGDL) NeurIPS 2020 competition.
arXiv Detail & Related papers (2021-06-09T01:37:36Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.