論文の概要: Revisiting Backdoor Attacks against Large Vision-Language Models
- arxiv url: http://arxiv.org/abs/2406.18844v1
- Date: Thu, 27 Jun 2024 02:31:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 15:27:31.072622
- Title: Revisiting Backdoor Attacks against Large Vision-Language Models
- Title(参考訳): 大規模視線モデルに対するバックドアアタックの再検討
- Authors: Siyuan Liang, Jiawei Liang, Tianyu Pang, Chao Du, Aishan Liu, Ee-Chien Chang, Xiaochun Cao,
- Abstract要約: 本稿では,LVLMの命令チューニングにおけるバックドア攻撃の一般化可能性について実験的に検討する。
以上に基づいて,既存のバックドア攻撃を修正した。
本稿では,従来のシンプルなバックドア戦略でさえ,LVLMに深刻な脅威をもたらすことを指摘する。
- 参考スコア(独自算出の注目度): 76.42014292255944
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Instruction tuning enhances large vision-language models (LVLMs) but raises security risks through potential backdoor attacks due to their openness. Previous backdoor studies focus on enclosed scenarios with consistent training and testing instructions, neglecting the practical domain gaps that could affect attack effectiveness. This paper empirically examines the generalizability of backdoor attacks during the instruction tuning of LVLMs for the first time, revealing certain limitations of most backdoor strategies in practical scenarios. We quantitatively evaluate the generalizability of six typical backdoor attacks on image caption benchmarks across multiple LVLMs, considering both visual and textual domain offsets. Our findings indicate that attack generalizability is positively correlated with the backdoor trigger's irrelevance to specific images/models and the preferential correlation of the trigger pattern. Additionally, we modify existing backdoor attacks based on the above key observations, demonstrating significant improvements in cross-domain scenario generalizability (+86% attack success rate). Notably, even without access to the instruction datasets, a multimodal instruction set can be successfully poisoned with a very low poisoning rate (0.2%), achieving an attack success rate of over 97%. This paper underscores that even simple traditional backdoor strategies pose a serious threat to LVLMs, necessitating more attention and in-depth research.
- Abstract(参考訳): インストラクションチューニングは、大きな視覚言語モデル(LVLM)を強化するが、オープン性によるバックドア攻撃によるセキュリティリスクを高める。
これまでのバックドア研究は、一貫したトレーニングとテストの指示を伴う囲い込みシナリオに焦点を当てており、攻撃効果に影響を与える可能性のある実践的なドメインギャップを無視している。
本稿では,LVLMの命令チューニングにおけるバックドア攻撃の一般化性を実証的に検討し,実践シナリオにおけるバックドア戦略の限界を明らかにした。
視覚領域オフセットとテキスト領域オフセットの両方を考慮すると、複数のLVLMにまたがるイメージキャプションベンチマークに対する6つの典型的なバックドア攻撃の一般化可能性について定量的に評価する。
その結果, 攻撃の一般化性は, 特定の画像・モデルに関係のないバックドアトリガーと, トリガーパターンの優先的相関に正の相関があることが示唆された。
さらに、上記の主要な観測結果に基づいて既存のバックドア攻撃を修正し、クロスドメインシナリオの一般化可能性(+86%の攻撃成功率)を大幅に改善したことを示す。
特に、命令データセットにアクセスしなくても、マルチモーダル命令セットは、非常に低い毒性率(0.2%)で、97%以上の攻撃成功率を達成することができる。
この論文は、シンプルなバックドア戦略でさえLVLMに深刻な脅威をもたらし、より多くの注意と詳細な研究を必要としていることを強調している。
関連論文リスト
- Proactive Adversarial Defense: Harnessing Prompt Tuning in Vision-Language Models to Detect Unseen Backdoored Images [0.0]
バックドア攻撃は、隠れたトリガーを入力に埋め込むことで重大な脅威となり、モデルがそれらをターゲットラベルに誤って分類する。
トレーニングと推論の両方において、未確認のバックドア画像を検出するための画期的な手法を提案する。
われわれのアプローチは、学習可能なテキストプロンプトを訓練し、クリーンな画像と隠れたバックドアトリガーを区別する。
論文 参考訳(メタデータ) (2024-12-11T19:54:14Z) - Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
既存のバックドア攻撃は主にバランスの取れたデータセットに焦点を当てている。
動的データ拡張操作(D$2$AO)という効果的なバックドア攻撃を提案する。
本手法は,クリーンな精度を維持しつつ,最先端の攻撃性能を実現することができる。
論文 参考訳(メタデータ) (2024-10-16T18:44:22Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models [70.03122709795122]
バックドア攻撃の検出, 局所化, 緩和のための総合防御手法T2IShieldを提案する。
バックドアトリガーによって引き起こされた横断アテンションマップの「アシミレーション現象」を見いだす。
バックドアサンプル検出のために、T2IShieldは計算コストの低い88.9$%のF1スコアを達成している。
論文 参考訳(メタデータ) (2024-07-05T01:53:21Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
バックドア攻撃はディープニューラルネットワーク(DNN)に重大な脆弱性をもたらす
図形化された2次元(2次元)決定境界の解析に基づく新しいバックドア検出手法であるモデルX線を提案する。
提案手法は,クリーンサンプルが支配する意思決定領域とラベル分布の集中度に着目した2つの戦略を含む。
論文 参考訳(メタデータ) (2024-02-27T12:42:07Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Demystifying Poisoning Backdoor Attacks from a Statistical Perspective [35.30533879618651]
バックドア攻撃は、そのステルス性や潜在的に深刻な影響により、重大なセキュリティリスクを引き起こす。
本稿では,一定のトリガを組み込んだバックドア攻撃の有効性を評価する。
我々の導出した理解は、識別モデルと生成モデルの両方に適用できる。
論文 参考訳(メタデータ) (2023-10-16T19:35:01Z) - Mitigating Backdoors in Federated Learning with FLD [7.908496863030483]
フェデレーション学習は、クライアントがプライバシー保護のために生データをアップロードすることなく、グローバルモデルを協調的にトレーニングすることを可能にする。
この機能は最近、バックドア攻撃に直面したフェデレーション学習の脆弱性の原因となっていることが判明した。
バックドア攻撃に対して効果的に防御する新しいモデルフィルタリング手法であるフェデレート層検出(FLD)を提案する。
論文 参考訳(メタデータ) (2023-03-01T07:54:54Z) - Rethinking the Backdoor Attacks' Triggers: A Frequency Perspective [10.03897682559064]
本稿では,既存のバックドアトリガを周波数の観点から再検討し,包括的解析を行う。
現在のバックドア攻撃の多くは、異なるデータセットと解像度にまたがって持続する重い高周波アーティファクトを示す。
高周波アーティファクトを使わずにスムーズなバックドアトリガーを作成し,その検出性を検討する実用的な方法を提案する。
論文 参考訳(メタデータ) (2021-04-07T22:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。