Two-Pronged Human Evaluation of ChatGPT Self-Correction in Radiology Report Simplification
- URL: http://arxiv.org/abs/2406.18859v1
- Date: Thu, 27 Jun 2024 03:05:35 GMT
- Title: Two-Pronged Human Evaluation of ChatGPT Self-Correction in Radiology Report Simplification
- Authors: Ziyu Yang, Santhosh Cherian, Slobodan Vucetic,
- Abstract summary: This study explores the suitability of large language models in automatically generating those simplifications.
We propose a new evaluation protocol that employs radiologists and laypeople, where radiologists verify the factual correctness of simplifications.
Our experimental results demonstrate the effectiveness of self-correction prompting in producing high-quality simplifications.
- Score: 5.059120569845976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiology reports are highly technical documents aimed primarily at doctor-doctor communication. There has been an increasing interest in sharing those reports with patients, necessitating providing them patient-friendly simplifications of the original reports. This study explores the suitability of large language models in automatically generating those simplifications. We examine the usefulness of chain-of-thought and self-correction prompting mechanisms in this domain. We also propose a new evaluation protocol that employs radiologists and laypeople, where radiologists verify the factual correctness of simplifications, and laypeople assess simplicity and comprehension. Our experimental results demonstrate the effectiveness of self-correction prompting in producing high-quality simplifications. Our findings illuminate the preferences of radiologists and laypeople regarding text simplification, informing future research on this topic.
Related papers
- Resource-Efficient Medical Report Generation using Large Language Models [3.2627279988912194]
Medical report generation is the task of automatically writing radiology reports for chest X-ray images.
We propose a new framework leveraging vision-enabled Large Language Models (LLM) for the task of medical report generation.
arXiv Detail & Related papers (2024-10-21T05:08:18Z) - ReXplain: Translating Radiology into Patient-Friendly Video Reports [5.787653511498558]
ReXplain is an AI-driven system that generates patient-friendly video reports for radiology findings.
Our proof-of-concept study with five board-certified radiologists indicates that ReXplain could accurately deliver radiological information.
arXiv Detail & Related papers (2024-10-01T06:41:18Z) - RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
This paper introduces a novel, entity-aware metric, as Radiological Report (Text) Evaluation (RaTEScore)
RaTEScore emphasizes crucial medical entities such as diagnostic outcomes and anatomical details, and is robust against complex medical synonyms and sensitive to negation expressions.
Our evaluations demonstrate that RaTEScore aligns more closely with human preference than existing metrics, validated both on established public benchmarks and our newly proposed RaTE-Eval benchmark.
arXiv Detail & Related papers (2024-06-24T17:49:28Z) - Consensus, dissensus and synergy between clinicians and specialist
foundation models in radiology report generation [32.26270073540666]
The worldwide shortage of radiologists restricts access to expert care and imposes heavy workloads.
Recent progress in automated report generation with vision-language models offer clear potential in ameliorating the situation.
We build a state-of-the-art report generation system for chest radiographs, $textitFlamingo-CXR, by fine-tuning a well-known vision-language foundation model on radiology data.
arXiv Detail & Related papers (2023-11-30T05:38:34Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - ChatGPT Makes Medicine Easy to Swallow: An Exploratory Case Study on
Simplified Radiology Reports [0.4194454151396506]
ChatGPT is a language model capable of generating text that appears human-like and authentic.
We asked 15 radiologists to assess the quality of radiology reports simplified by ChatGPT.
Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient.
arXiv Detail & Related papers (2022-12-30T18:55:16Z) - Improving Radiology Summarization with Radiograph and Anatomy Prompts [60.30659124918211]
We propose a novel anatomy-enhanced multimodal model to promote impression generation.
In detail, we first construct a set of rules to extract anatomies and put these prompts into each sentence to highlight anatomy characteristics.
We utilize a contrastive learning module to align these two representations at the overall level and use a co-attention to fuse them at the sentence level.
arXiv Detail & Related papers (2022-10-15T14:05:03Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
Radiology report generation aims at generating descriptive text from radiology images automatically.
A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss.
We propose a novel weakly supervised contrastive loss for medical report generation.
arXiv Detail & Related papers (2021-09-25T00:06:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.