Specificity-Preserving Federated Learning for MR Image Reconstruction
- URL: http://arxiv.org/abs/2112.05752v1
- Date: Thu, 9 Dec 2021 22:13:35 GMT
- Title: Specificity-Preserving Federated Learning for MR Image Reconstruction
- Authors: Chun-Mei Feng and Yunlu Yan and Huazhu Fu and Yong Xu and Ling Shao
- Abstract summary: Federated learning can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction.
Recent FL techniques tend to solve this by enhancing the generalization of the global model.
We propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI)
- Score: 94.58912814426122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) can be used to improve data privacy and efficiency in
magnetic resonance (MR) image reconstruction by enabling multiple institutions
to collaborate without needing to aggregate local data. However, the domain
shift caused by different MR imaging protocols can substantially degrade the
performance of FL models. Recent FL techniques tend to solve this by enhancing
the generalization of the global model, but they ignore the domain-specific
features, which may contain important information about the device properties
and be useful for local reconstruction. In this paper, we propose a
specificity-preserving FL algorithm for MR image reconstruction (FedMRI). The
core idea is to divide the MR reconstruction model into two parts: a globally
shared encoder to obtain a generalized representation at the global level, and
a client-specific decoder to preserve the domain-specific properties of each
client, which is important for collaborative reconstruction when the clients
have unique distribution. Moreover, to further boost the convergence of the
globally shared encoder when a domain shift is present, a weighted contrastive
regularization is introduced to directly correct any deviation between the
client and server during optimization. Extensive experiments demonstrate that
our FedMRI's reconstructed results are the closest to the ground-truth for
multi-institutional data, and that it outperforms state-of-the-art FL methods.
Related papers
- Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning [86.99944014645322]
We introduce a novel framework, Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning.
We decompose each query image into its high-frequency and low-frequency components, and parallel incorporate them into the feature embedding network.
Our framework establishes new state-of-the-art results on multiple cross-domain few-shot learning benchmarks.
arXiv Detail & Related papers (2024-11-03T04:02:35Z) - Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
We propose a novel Frequency and Spatial Mutual Learning Network (FSMNet) to explore global dependencies across different modalities.
The proposed FSMNet achieves state-of-the-art performance for the Multi-Contrast MR Reconstruction task with different acceleration factors.
arXiv Detail & Related papers (2024-09-21T12:02:47Z) - MMR-Mamba: Multi-Modal MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion [17.084083262801737]
We propose MMR-Mamba, a novel framework that thoroughly and efficiently integrates multi-modal features for MRI reconstruction.
Specifically, we first design a Target modality-guided Cross Mamba (TCM) module in the spatial domain.
Then, we introduce a Selective Frequency Fusion (SFF) module to efficiently integrate global information in the Fourier domain.
arXiv Detail & Related papers (2024-06-27T07:30:54Z) - In-Domain GAN Inversion for Faithful Reconstruction and Editability [132.68255553099834]
We propose in-domain GAN inversion, which consists of a domain-guided domain-regularized and a encoder to regularize the inverted code in the native latent space of the pre-trained GAN model.
We make comprehensive analyses on the effects of the encoder structure, the starting inversion point, as well as the inversion parameter space, and observe the trade-off between the reconstruction quality and the editing property.
arXiv Detail & Related papers (2023-09-25T08:42:06Z) - CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
Reconstruction [4.967600587813224]
Undersampling k-space data in MRI reduces scan time but pose challenges in image reconstruction.
We propose CAMP-Net, an unrolling-based Consistency-Aware Multi-Prior Network for accelerated MRI reconstruction.
arXiv Detail & Related papers (2023-06-20T02:21:45Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
We show that neural network layers that explicitly combine frequency and image feature representations can be used as a versatile building block for reconstruction from frequency space data.
The proposed joint learning schemes enable both correction of artifacts native to the frequency space and manipulation of image space representations to reconstruct coherent image structures at every layer of the network.
arXiv Detail & Related papers (2020-07-02T23:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.