Multi-modal Food Recommendation using Clustering and Self-supervised Learning
- URL: http://arxiv.org/abs/2406.18962v1
- Date: Thu, 27 Jun 2024 07:45:17 GMT
- Title: Multi-modal Food Recommendation using Clustering and Self-supervised Learning
- Authors: Yixin Zhang, Xin Zhou, Qianwen Meng, Fanglin Zhu, Yonghui Xu, Zhiqi Shen, Lizhen Cui,
- Abstract summary: We present CLUSSL, a novel food recommendation framework that employs clustering and self-supervised learning.
CLUSSL formulates a modality-specific graph tailored to each modality with discrete/continuous features, thereby transforming semantic features into structural representation.
A self-supervised learning objective is proposed to foster independence between recipe representations derived from different unimodal graphs.
- Score: 27.74592587848116
- License:
- Abstract: Food recommendation systems serve as pivotal components in the realm of digital lifestyle services, designed to assist users in discovering recipes and food items that resonate with their unique dietary predilections. Typically, multi-modal descriptions offer an exhaustive profile for each recipe, thereby ensuring recommendations that are both personalized and accurate. Our preliminary investigation of two datasets indicates that pre-trained multi-modal dense representations might precipitate a deterioration in performance compared to ID features when encapsulating interactive relationships. This observation implies that ID features possess a relative superiority in modeling interactive collaborative signals. Consequently, contemporary cutting-edge methodologies augment ID features with multi-modal information as supplementary features, overlooking the latent semantic relations between recipes. To rectify this, we present CLUSSL, a novel food recommendation framework that employs clustering and self-supervised learning. Specifically, CLUSSL formulates a modality-specific graph tailored to each modality with discrete/continuous features, thereby transforming semantic features into structural representation. Furthermore, CLUSSL procures recipe representations pertinent to different modalities via graph convolutional operations. A self-supervised learning objective is proposed to foster independence between recipe representations derived from different unimodal graphs. Comprehensive experiments on real-world datasets substantiate that CLUSSL consistently surpasses state-of-the-art recommendation benchmarks in performance.
Related papers
- Retrieval Augmented Recipe Generation [96.43285670458803]
We propose a retrieval augmented large multimodal model for recipe generation.
It retrieves recipes semantically related to the image from an existing datastore as a supplement.
It calculates the consistency among generated recipe candidates, which use different retrieval recipes as context for generation.
arXiv Detail & Related papers (2024-11-13T15:58:50Z) - An Information Criterion for Controlled Disentanglement of Multimodal Data [39.601584166020274]
Multimodal representation learning seeks to relate and decompose information inherent in multiple modalities.
Disentangled Self-Supervised Learning (DisentangledSSL) is a novel self-supervised approach for learning disentangled representations.
arXiv Detail & Related papers (2024-10-31T14:57:31Z) - Triple Modality Fusion: Aligning Visual, Textual, and Graph Data with Large Language Models for Multi-Behavior Recommendations [12.154043062308201]
This paper introduces a novel framework for multi-behavior recommendations, leveraging the fusion of triple-modality.
Our proposed model called Triple Modality Fusion (TMF) utilizes the power of large language models (LLMs) to align and integrate these three modalities.
Extensive experiments demonstrate the effectiveness of our approach in improving recommendation accuracy.
arXiv Detail & Related papers (2024-10-16T04:44:15Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - BiVRec: Bidirectional View-based Multimodal Sequential Recommendation [55.87443627659778]
We propose an innovative framework, BivRec, that jointly trains the recommendation tasks in both ID and multimodal views.
BivRec achieves state-of-the-art performance on five datasets and showcases various practical advantages.
arXiv Detail & Related papers (2024-02-27T09:10:41Z) - CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts [11.752632557524969]
We propose contrastive learning with data augmentation to disentangle content features from the original representations.
Our experiments across diverse datasets demonstrate significant improvements in zero-shot and few-shot classification tasks.
arXiv Detail & Related papers (2023-11-28T03:00:59Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Preserving Modality Structure Improves Multi-Modal Learning [64.10085674834252]
Self-supervised learning on large-scale multi-modal datasets allows learning semantically meaningful embeddings without relying on human annotations.
These methods often struggle to generalize well on out-of-domain data as they ignore the semantic structure present in modality-specific embeddings.
We propose a novel Semantic-Structure-Preserving Consistency approach to improve generalizability by preserving the modality-specific relationships in the joint embedding space.
arXiv Detail & Related papers (2023-08-24T20:46:48Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - MCEN: Bridging Cross-Modal Gap between Cooking Recipes and Dish Images
with Latent Variable Model [28.649961369386148]
We present Modality-Consistent Embedding Network (MCEN) that learns modality-invariant representations by projecting images and texts to the same embedding space.
Our method learns the cross-modal alignments during training but computes embeddings of different modalities independently at inference time for the sake of efficiency.
arXiv Detail & Related papers (2020-04-02T16:00:10Z) - Multi-Granularity Reference-Aided Attentive Feature Aggregation for
Video-based Person Re-identification [98.7585431239291]
Video-based person re-identification aims at matching the same person across video clips.
In this paper, we propose an attentive feature aggregation module, namely Multi-Granularity Reference-Attentive Feature aggregation module MG-RAFA.
Our framework achieves the state-of-the-art ablation performance on three benchmark datasets.
arXiv Detail & Related papers (2020-03-27T03:49:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.