An Information Criterion for Controlled Disentanglement of Multimodal Data
- URL: http://arxiv.org/abs/2410.23996v1
- Date: Thu, 31 Oct 2024 14:57:31 GMT
- Title: An Information Criterion for Controlled Disentanglement of Multimodal Data
- Authors: Chenyu Wang, Sharut Gupta, Xinyi Zhang, Sana Tonekaboni, Stefanie Jegelka, Tommi Jaakkola, Caroline Uhler,
- Abstract summary: Multimodal representation learning seeks to relate and decompose information inherent in multiple modalities.
Disentangled Self-Supervised Learning (DisentangledSSL) is a novel self-supervised approach for learning disentangled representations.
- Score: 39.601584166020274
- License:
- Abstract: Multimodal representation learning seeks to relate and decompose information inherent in multiple modalities. By disentangling modality-specific information from information that is shared across modalities, we can improve interpretability and robustness and enable downstream tasks such as the generation of counterfactual outcomes. Separating the two types of information is challenging since they are often deeply entangled in many real-world applications. We propose Disentangled Self-Supervised Learning (DisentangledSSL), a novel self-supervised approach for learning disentangled representations. We present a comprehensive analysis of the optimality of each disentangled representation, particularly focusing on the scenario not covered in prior work where the so-called Minimum Necessary Information (MNI) point is not attainable. We demonstrate that DisentangledSSL successfully learns shared and modality-specific features on multiple synthetic and real-world datasets and consistently outperforms baselines on various downstream tasks, including prediction tasks for vision-language data, as well as molecule-phenotype retrieval tasks for biological data.
Related papers
- Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
We introduce the modality importance score (MIS) to identify bias inVidQA benchmarks and datasets.
We also propose an innovative method using state-of-the-art MLLMs to estimate the modality importance.
Our results indicate that current models do not effectively integrate information due to modality imbalance in existing datasets.
arXiv Detail & Related papers (2024-08-22T23:32:42Z) - Beyond Unimodal Learning: The Importance of Integrating Multiple Modalities for Lifelong Learning [23.035725779568587]
We study the role and interactions of multiple modalities in mitigating forgetting in deep neural networks (DNNs)
Our findings demonstrate that leveraging multiple views and complementary information from multiple modalities enables the model to learn more accurate and robust representations.
We propose a method for integrating and aligning the information from different modalities by utilizing the relational structural similarities between the data points in each modality.
arXiv Detail & Related papers (2024-05-04T22:02:58Z) - Neuro-Inspired Information-Theoretic Hierarchical Perception for Multimodal Learning [16.8379583872582]
We develop the Information-Theoretic Hierarchical Perception (ITHP) model, which utilizes the concept of information bottleneck.
We show that ITHP consistently distills crucial information in multimodal learning scenarios, outperforming state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-04-15T01:34:44Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
We propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation.
We validate our approach on six real world distribution shift benchmarks, and different data modalities.
arXiv Detail & Related papers (2023-04-17T01:33:24Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Beyond Just Vision: A Review on Self-Supervised Representation Learning
on Multimodal and Temporal Data [10.006890915441987]
Popularity of self-supervised learning is driven by the fact that traditional models typically require a huge amount of well-annotated data for training.
Self-supervised methods have been introduced to improve the efficiency of training data through discriminative pre-training of models.
We aim to provide the first comprehensive review of multimodal self-supervised learning methods for temporal data.
arXiv Detail & Related papers (2022-06-06T04:59:44Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.