DiffLoss: unleashing diffusion model as constraint for training image restoration network
- URL: http://arxiv.org/abs/2406.19030v2
- Date: Sun, 21 Jul 2024 08:38:28 GMT
- Title: DiffLoss: unleashing diffusion model as constraint for training image restoration network
- Authors: Jiangtong Tan, Feng Zhao,
- Abstract summary: We introduce a new perspective that implicitly leverages the diffusion model to assist the training of image restoration network, called DiffLoss.
By combining these two designs, the overall loss function is able to improve the perceptual quality of image restoration, resulting in visually pleasing and semantically enhanced outcomes.
- Score: 4.8677910801584385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration aims to enhance low quality images, producing high quality images that exhibit natural visual characteristics and fine semantic attributes. Recently, the diffusion model has emerged as a powerful technique for image generation, and it has been explicitly employed as a backbone in image restoration tasks, yielding excellent results. However, it suffers from the drawbacks of slow inference speed and large model parameters due to its intrinsic characteristics. In this paper, we introduce a new perspective that implicitly leverages the diffusion model to assist the training of image restoration network, called DiffLoss, which drives the restoration results to be optimized for naturalness and semantic-aware visual effect. To achieve this, we utilize the mode coverage capability of the diffusion model to approximate the distribution of natural images and explore its ability to capture image semantic attributes. On the one hand, we extract intermediate noise to leverage its modeling capability of the distribution of natural images, which serves as a naturalness-oriented optimization space. On the other hand, we utilize the bottleneck features of diffusion model to harness its semantic attributes serving as a constraint on semantic level. By combining these two designs, the overall loss function is able to improve the perceptual quality of image restoration, resulting in visually pleasing and semantically enhanced outcomes. To validate the effectiveness of our method, we conduct experiments on various common image restoration tasks and benchmarks. Extensive experimental results demonstrate that our approach enhances the visual quality and semantic perception of the restoration network.
Related papers
- Towards Unsupervised Blind Face Restoration using Diffusion Prior [12.69610609088771]
Blind face restoration methods have shown remarkable performance when trained on large-scale synthetic datasets with supervised learning.
These datasets are often generated by simulating low-quality face images with a handcrafted image degradation pipeline.
In this paper, we address this issue by using only a set of input images, with unknown degradations and without ground truth targets, to fine-tune a restoration model.
Our best model also achieves the state-of-the-art results on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-06T20:38:14Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
This work leverages a capable vision-language model and a synthetic degradation pipeline to learn image restoration in the wild (wild IR)
Our base diffusion model is the image restoration SDE (IR-SDE)
arXiv Detail & Related papers (2024-04-15T12:34:21Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - CasSR: Activating Image Power for Real-World Image Super-Resolution [24.152495730507823]
Cascaded diffusion for Super-Resolution, CasSR, is a novel method designed to produce highly detailed and realistic images.
We develop a cascaded controllable diffusion model that aims to optimize the extraction of information from low-resolution images.
arXiv Detail & Related papers (2024-03-18T03:59:43Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.