SimpleFusion: A Simple Fusion Framework for Infrared and Visible Images
- URL: http://arxiv.org/abs/2406.19055v1
- Date: Thu, 27 Jun 2024 10:03:20 GMT
- Title: SimpleFusion: A Simple Fusion Framework for Infrared and Visible Images
- Authors: Ming Chen, Yuxuan Cheng, Xinwei He, Xinyue Wang, Yan Aze, Jinhai Xiang,
- Abstract summary: Integrating visible and infrared images into one high-quality image, also known as visible and infrared image fusion, is a challenging yet critical task.
This paper presents SimpleFusion, a simple yet effective framework for visible and infrared image fusion.
- Score: 8.733076784812551
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Integrating visible and infrared images into one high-quality image, also known as visible and infrared image fusion, is a challenging yet critical task for many downstream vision tasks. Most existing works utilize pretrained deep neural networks or design sophisticated frameworks with strong priors for this task, which may be unsuitable or lack flexibility. This paper presents SimpleFusion, a simple yet effective framework for visible and infrared image fusion. Our framework follows the decompose-and-fusion paradigm, where the visible and the infrared images are decomposed into reflectance and illumination components via Retinex theory and followed by the fusion of these corresponding elements. The whole framework is designed with two plain convolutional neural networks without downsampling, which can perform image decomposition and fusion efficiently. Moreover, we introduce decomposition loss and a detail-to-semantic loss to preserve the complementary information between the two modalities for fusion. We conduct extensive experiments on the challenging benchmarks, verifying the superiority of our method over previous state-of-the-arts. Code is available at \href{https://github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images}{https://github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images}
Related papers
- Infrared-Assisted Single-Stage Framework for Joint Restoration and Fusion of Visible and Infrared Images under Hazy Conditions [9.415977819944246]
We propose a joint learning framework that utilizes infrared image for the restoration and fusion of hazy IR-VIS images.
Our method effectively fuses IR-VIS images while removing haze, yielding clear, haze-free fusion results.
arXiv Detail & Related papers (2024-11-16T02:57:12Z) - BusReF: Infrared-Visible images registration and fusion focus on
reconstructible area using one set of features [39.575353043949725]
In a scenario where multi-modal cameras are operating together, the problem of working with non-aligned images cannot be avoided.
Existing image fusion algorithms rely heavily on strictly registered input image pairs to produce more precise fusion results.
This paper aims to address the problem of image registration and fusion in a single framework, called BusRef.
arXiv Detail & Related papers (2023-12-30T17:32:44Z) - IAIFNet: An Illumination-Aware Infrared and Visible Image Fusion Network [13.11361803763253]
We propose an Illumination-Aware Infrared and Visible Image Fusion Network, named as IAIFNet.
In our framework, an illumination enhancement network first estimates the incident illumination maps of input images.
With the help of proposed adaptive differential fusion module (ADFM) and salient target aware module (STAM), an image fusion network effectively integrates the salient features of the illumination-enhanced infrared and visible images into a fusion image of high visual quality.
arXiv Detail & Related papers (2023-09-26T15:12:29Z) - SSPFusion: A Semantic Structure-Preserving Approach for Infrared and
Visible Image Fusion [30.55433673796615]
Most existing learning-based infrared and visible image fusion (IVIF) methods exhibit massive redundant information in the fusion images.
We propose a semantic structure-preserving approach for IVIF, namely SSPFusion.
Our method is able to generate high-quality fusion images from pairs of infrared and visible images, which can boost the performance of downstream computer-vision tasks.
arXiv Detail & Related papers (2023-09-26T08:13:32Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems.
Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent.
multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture.
arXiv Detail & Related papers (2023-05-17T06:48:35Z) - LRRNet: A Novel Representation Learning Guided Fusion Network for
Infrared and Visible Images [98.36300655482196]
We formulate the fusion task mathematically, and establish a connection between its optimal solution and the network architecture that can implement it.
In particular we adopt a learnable representation approach to the fusion task, in which the construction of the fusion network architecture is guided by the optimisation algorithm producing the learnable model.
Based on this novel network architecture, an end-to-end lightweight fusion network is constructed to fuse infrared and visible light images.
arXiv Detail & Related papers (2023-04-11T12:11:23Z) - Breaking Free from Fusion Rule: A Fully Semantic-driven Infrared and
Visible Image Fusion [51.22863068854784]
Infrared and visible image fusion plays a vital role in the field of computer vision.
Previous approaches make efforts to design various fusion rules in the loss functions.
We develop a semantic-level fusion network to sufficiently utilize the semantic guidance.
arXiv Detail & Related papers (2022-11-22T13:59:59Z) - CoCoNet: Coupled Contrastive Learning Network with Multi-level Feature Ensemble for Multi-modality Image Fusion [68.78897015832113]
We propose a coupled contrastive learning network, dubbed CoCoNet, to realize infrared and visible image fusion.
Our method achieves state-of-the-art (SOTA) performance under both subjective and objective evaluation.
arXiv Detail & Related papers (2022-11-20T12:02:07Z) - Unsupervised Misaligned Infrared and Visible Image Fusion via
Cross-Modality Image Generation and Registration [59.02821429555375]
We present a robust cross-modality generation-registration paradigm for unsupervised misaligned infrared and visible image fusion.
To better fuse the registered infrared images and visible images, we present a feature Interaction Fusion Module (IFM)
arXiv Detail & Related papers (2022-05-24T07:51:57Z) - RFN-Nest: An end-to-end residual fusion network for infrared and visible
images [37.935940961760785]
We propose an end-to-end fusion network architecture (RFN-Nest) for infrared and visible image fusion.
A novel detail-preserving loss function, and a feature enhancing loss function are proposed to train RFN.
The experimental results on public domain data sets show that, compared with the existing methods, our end-to-end fusion network delivers a better performance than the state-of-the-art methods.
arXiv Detail & Related papers (2021-03-07T07:29:50Z) - DF-GAN: A Simple and Effective Baseline for Text-to-Image Synthesis [80.54273334640285]
We propose a novel one-stage text-to-image backbone that directly synthesizes high-resolution images without entanglements between different generators.
We also propose a novel Target-Aware Discriminator composed of Matching-Aware Gradient Penalty and One-Way Output.
Compared with current state-of-the-art methods, our proposed DF-GAN is simpler but more efficient to synthesize realistic and text-matching images.
arXiv Detail & Related papers (2020-08-13T12:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.