Unsupervised Latent Stain Adaptation for Computational Pathology
- URL: http://arxiv.org/abs/2406.19081v2
- Date: Wed, 3 Jul 2024 11:34:39 GMT
- Title: Unsupervised Latent Stain Adaptation for Computational Pathology
- Authors: Daniel Reisenbüchler, Lucas Luttner, Nadine S. Schaadt, Friedrich Feuerhake, Dorit Merhof,
- Abstract summary: Stain adaptation aims to reduce the generalization error between different stains by training a model on source stains that generalizes to target stains.
We propose a joint training between artificially labeled and unlabeled data including all available stained images called Unsupervised Latent Stain Adaptation (ULSA)
Our method uses stain translation to enrich labeled source images with synthetic target images in order to increase the supervised signals.
- Score: 2.483372684394528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computational pathology, deep learning (DL) models for tasks such as segmentation or tissue classification are known to suffer from domain shifts due to different staining techniques. Stain adaptation aims to reduce the generalization error between different stains by training a model on source stains that generalizes to target stains. Despite the abundance of target stain data, a key challenge is the lack of annotations. To address this, we propose a joint training between artificially labeled and unlabeled data including all available stained images called Unsupervised Latent Stain Adaptation (ULSA). Our method uses stain translation to enrich labeled source images with synthetic target images in order to increase the supervised signals. Moreover, we leverage unlabeled target stain images using stain-invariant feature consistency learning. With ULSA we present a semi-supervised strategy for efficient stain adaptation without access to annotated target stain data. Remarkably, ULSA is task agnostic in patch-level analysis for whole slide images (WSIs). Through extensive evaluation on external datasets, we demonstrate that ULSA achieves state-of-the-art (SOTA) performance in kidney tissue segmentation and breast cancer classification across a spectrum of staining variations. Our findings suggest that ULSA is an important framework for stain adaptation in computational pathology.
Related papers
- Stain Consistency Learning: Handling Stain Variation for Automatic
Digital Pathology Segmentation [3.2386272343130127]
We propose a novel framework combining stain-specific augmentation with a stain consistency loss function to learn stain colour invariant features.
We compare ten methods on Masson's trichrome and H&E stained cell and nuclei datasets, respectively.
We observed that stain normalisation methods resulted in equivalent or worse performance, while stain augmentation or stain adversarial methods demonstrated improved performance.
arXiv Detail & Related papers (2023-11-11T12:00:44Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Standardized CycleGAN training for unsupervised stain adaptation in
invasive carcinoma classification for breast histopathology [0.0]
We implement a stain translation strategy using cycleGANs for unsupervised image-to-image translation.
Two of the proposed approaches use cycleGAN's translations at inference or training in order to build stain-specific classification models.
The last method uses them for stain data augmentation during training.
arXiv Detail & Related papers (2023-01-30T18:07:09Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - HistoStarGAN: A Unified Approach to Stain Normalisation, Stain Transfer
and Stain Invariant Segmentation in Renal Histopathology [0.5505634045241288]
HistoStarGAN is a unified framework that performs stain transfer between multiple stainings.
It can serve as a synthetic data generator, which paves the way for the use of fully annotated synthetic image data.
arXiv Detail & Related papers (2022-10-18T12:22:26Z) - Stain-Adaptive Self-Supervised Learning for Histopathology Image
Analysis [3.8073142980733]
We propose a novel Stain-Adaptive Self-Supervised Learning(SASSL) method for histopathology image analysis.
Our SASSL integrates a domain-adversarial training module into the SSL framework to learn distinctive features that are robust to both various transformations and stain variations.
Experimental results demonstrate that the proposed method can robustly improve the feature extraction ability of the model.
arXiv Detail & Related papers (2022-08-08T09:54:46Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.