Dimensions underlying the representational alignment of deep neural networks with humans
- URL: http://arxiv.org/abs/2406.19087v1
- Date: Thu, 27 Jun 2024 11:14:14 GMT
- Title: Dimensions underlying the representational alignment of deep neural networks with humans
- Authors: Florian P. Mahner, Lukas Muttenthaler, Umut Güçlü, Martin N. Hebart,
- Abstract summary: We propose a generic framework for yielding comparable representations in humans and deep neural networks (DNNs)
Applying this framework to humans and a DNN model of natural images revealed a low-dimensional DNN embedding of both visual and semantic dimensions.
In contrast to humans, DNNs exhibited a clear dominance of visual over semantic features, indicating divergent strategies for representing images.
- Score: 3.1668470116181817
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Determining the similarities and differences between humans and artificial intelligence is an important goal both in machine learning and cognitive neuroscience. However, similarities in representations only inform us about the degree of alignment, not the factors that determine it. Drawing upon recent developments in cognitive science, we propose a generic framework for yielding comparable representations in humans and deep neural networks (DNN). Applying this framework to humans and a DNN model of natural images revealed a low-dimensional DNN embedding of both visual and semantic dimensions. In contrast to humans, DNNs exhibited a clear dominance of visual over semantic features, indicating divergent strategies for representing images. While in-silico experiments showed seemingly-consistent interpretability of DNN dimensions, a direct comparison between human and DNN representations revealed substantial differences in how they process images. By making representations directly comparable, our results reveal important challenges for representational alignment, offering a means for improving their comparability.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Divergences in Color Perception between Deep Neural Networks and Humans [3.0315685825606633]
We develop experiments for evaluating the perceptual coherence of color embeddings in deep neural networks (DNNs)
We assess how well these algorithms predict human color similarity judgments collected via an online survey.
We compare DNN performance against an interpretable and cognitively plausible model of color perception based on wavelet decomposition.
arXiv Detail & Related papers (2023-09-11T20:26:40Z) - Evaluating alignment between humans and neural network representations in image-based learning tasks [5.657101730705275]
We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories.
We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation.
In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks.
arXiv Detail & Related papers (2023-06-15T08:18:29Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Harmonizing the object recognition strategies of deep neural networks
with humans [10.495114898741205]
We show that state-of-the-art deep neural networks (DNNs) are becoming less aligned with humans as their accuracy improves.
Our work represents the first demonstration that the scaling laws that are guiding the design of DNNs today have also produced worse models of human vision.
arXiv Detail & Related papers (2022-11-08T20:03:49Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
We have recently studied covariance neural networks (VNNs) that operate on sample covariance matrices.
In this paper, we demonstrate the utility of VNNs in inferring brain age using cortical thickness data.
Our results show that VNNs exhibit multi-scale and multi-site transferability for inferring brain age
In the context of brain age in Alzheimer's disease (AD), our experiments show that i) VNN outputs are interpretable as brain age predicted using VNNs is significantly elevated for AD with respect to healthy subjects.
arXiv Detail & Related papers (2022-10-28T18:58:34Z) - Prune and distill: similar reformatting of image information along rat
visual cortex and deep neural networks [61.60177890353585]
Deep convolutional neural networks (CNNs) have been shown to provide excellent models for its functional analogue in the brain, the ventral stream in visual cortex.
Here we consider some prominent statistical patterns that are known to exist in the internal representations of either CNNs or the visual cortex.
We show that CNNs and visual cortex share a similarly tight relationship between dimensionality expansion/reduction of object representations and reformatting of image information.
arXiv Detail & Related papers (2022-05-27T08:06:40Z) - Comparing object recognition in humans and deep convolutional neural
networks -- An eye tracking study [7.222232547612573]
Deep convolutional neural networks (DCNNs) and the ventral visual pathway share vast architectural and functional similarities.
We demonstrate a comparison of human observers (N = 45) and three feedforward DCNNs through eye tracking and saliency maps.
A DCNN with biologically plausible receptive field sizes called vNet reveals higher agreement with human viewing behavior as contrasted with a standard ResNet architecture.
arXiv Detail & Related papers (2021-07-30T23:32:05Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
We investigate the suitability of state-of-the-art deep learning architectures for continuous emotion recognition using long video sequences captured in-the-wild.
We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning.
arXiv Detail & Related papers (2020-11-18T13:42:05Z) - Fooling the primate brain with minimal, targeted image manipulation [67.78919304747498]
We propose an array of methods for creating minimal, targeted image perturbations that lead to changes in both neuronal activity and perception as reflected in behavior.
Our work shares the same goal with adversarial attack, namely the manipulation of images with minimal, targeted noise that leads ANN models to misclassify the images.
arXiv Detail & Related papers (2020-11-11T08:30:54Z) - Seeing eye-to-eye? A comparison of object recognition performance in
humans and deep convolutional neural networks under image manipulation [0.0]
This study aims towards a behavioral comparison of visual core object recognition performance between humans and feedforward neural networks.
Analyses of accuracy revealed that humans not only outperform DCNNs on all conditions, but also display significantly greater robustness towards shape and most notably color alterations.
arXiv Detail & Related papers (2020-07-13T10:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.