SubLock: Sub-Circuit Replacement based Input Dependent Key-based Logic Locking for Robust IP Protection
- URL: http://arxiv.org/abs/2406.19091v1
- Date: Thu, 27 Jun 2024 11:17:06 GMT
- Title: SubLock: Sub-Circuit Replacement based Input Dependent Key-based Logic Locking for Robust IP Protection
- Authors: Vijaypal Singh Rathor, Munesh Singh, Kshira Sagar Sahoo, Saraju P. Mohanty,
- Abstract summary: Existing logic locking techniques are vulnerable to SAT-based attacks.
Several SAT-resistant logic locking methods are reported; they require significant overhead.
This paper proposes a novel input dependent key-based logic locking (IDKLL) that effectively prevents SAT-based attacks with low overhead.
- Score: 1.804933160047171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intellectual Property (IP) piracy, overbuilding, reverse engineering, and hardware Trojan are serious security concerns during integrated circuit (IC) development. Logic locking has proven to be a solid defence for mitigating these threats. The existing logic locking techniques are vulnerable to SAT-based attacks. However, several SAT-resistant logic locking methods are reported; they require significant overhead. This paper proposes a novel input dependent key-based logic locking (IDKLL) that effectively prevents SAT-based attacks with low overhead. We first introduce a novel idea of IDKLL, where a design is locked such that it functions correctly for all input patterns only when their corresponding valid key sequences are applied. In contrast to conventional logic locking, the proposed IDKLL method uses multiple key sequences (instead of a single key sequence) as a valid key that provides correct functionality for all inputs. Further, we propose a sub-circuit replacement based IDKLL approach called SubLock that locks the design by replacing the original sub-circuitry with the corresponding IDKLL based locked circuit to prevent SAT attack with low overhead. The experimental evaluation on ISCAS benchmarks shows that the proposed SubLock mitigates the SAT attack with high security and reduced overhead over the well-known existing methods.
Related papers
- Cute-Lock: Behavioral and Structural Multi-Key Logic Locking Using Time Base Keys [1.104960878651584]
We propose, implement and evaluate a family of secure multi-key logic locking algorithms called Cute-Lock.
Our experimental results under a diverse range of attacks confirm that, compared to vulnerable state-of-the-art methods, employing the Cute-Lock family drives attacking attempts to a dead end without additional overhead.
arXiv Detail & Related papers (2025-01-29T03:44:55Z) - K-Gate Lock: Multi-Key Logic Locking Using Input Encoding Against Oracle-Guided Attacks [1.104960878651584]
K-Gate Lock encodes input patterns using multiple keys that are applied to one set of key inputs at different operational times.
Uses multiple keys will make the circuit secure against oracle-guided attacks and increase attacker efforts to an exponentially time-consuming brute force search.
arXiv Detail & Related papers (2025-01-03T22:07:38Z) - Late Breaking Results: On the One-Key Premise of Logic Locking [0.40980625270164805]
A locking technique is deemed secure if it resists a good array of attacks aimed at finding this correct key.
This paper challenges this one-key premise by introducing a more efficient attack methodology.
Our attack achieves a runtime reduction of up to 99.6% compared to the conventional attack that tries to find a single correct key.
arXiv Detail & Related papers (2024-08-22T19:05:13Z) - RTL Interconnect Obfuscation By Polymorphic Switch Boxes For Secure Hardware Generation [0.0]
We present an interconnect obfuscation scheme at the Register-Transfer Level (RTL) using Switch Boxes (SBs) constructed of Polymorphic Transistors.
A polymorphic SB can be designed using the same transistor count as its Complementary-Metal-Oxide-Semiconductor based counterpart.
arXiv Detail & Related papers (2024-04-11T01:42:01Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Challenging the Security of Logic Locking Schemes in the Era of Deep
Learning: A Neuroevolutionary Approach [0.2982610402087727]
Deep learning is being introduced in the domain of logic locking.
We present SnapShot: a novel attack on logic locking that is the first of its kind to utilize artificial neural networks.
We show that SnapShot achieves an average key prediction accuracy of 82.60% for the selected attack scenario.
arXiv Detail & Related papers (2020-11-20T13:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.