Cute-Lock: Behavioral and Structural Multi-Key Logic Locking Using Time Base Keys
- URL: http://arxiv.org/abs/2501.17402v1
- Date: Wed, 29 Jan 2025 03:44:55 GMT
- Title: Cute-Lock: Behavioral and Structural Multi-Key Logic Locking Using Time Base Keys
- Authors: Kevin Lopez, Amin Rezaei,
- Abstract summary: We propose, implement and evaluate a family of secure multi-key logic locking algorithms called Cute-Lock.
Our experimental results under a diverse range of attacks confirm that, compared to vulnerable state-of-the-art methods, employing the Cute-Lock family drives attacking attempts to a dead end without additional overhead.
- Score: 1.104960878651584
- License:
- Abstract: The outsourcing of semiconductor manufacturing raises security risks, such as piracy and overproduction of hardware intellectual property. To overcome this challenge, logic locking has emerged to lock a given circuit using additional key bits. While single-key logic locking approaches have demonstrated serious vulnerability to a wide range of attacks, multi-key solutions, if carefully designed, can provide a reliable defense against not only oracle-guided logic attacks, but also removal and dataflow attacks. In this paper, using time base keys, we propose, implement and evaluate a family of secure multi-key logic locking algorithms called Cute-Lock that can be applied both in RTL-level behavioral and netlist-level structural representations of sequential circuits. Our extensive experimental results under a diverse range of attacks confirm that, compared to vulnerable state-of-the-art methods, employing the Cute-Lock family drives attacking attempts to a dead end without additional overhead.
Related papers
- The Impact of Logic Locking on Confidentiality: An Automated Evaluation [10.116593996661756]
We show that a single malicious logic locking key can expose over 70% of an encryption key.
This research uncovers a significant security vulnerability in logic locking.
arXiv Detail & Related papers (2025-02-03T11:01:11Z) - K-Gate Lock: Multi-Key Logic Locking Using Input Encoding Against Oracle-Guided Attacks [1.104960878651584]
K-Gate Lock encodes input patterns using multiple keys that are applied to one set of key inputs at different operational times.
Uses multiple keys will make the circuit secure against oracle-guided attacks and increase attacker efforts to an exponentially time-consuming brute force search.
arXiv Detail & Related papers (2025-01-03T22:07:38Z) - Late Breaking Results: On the One-Key Premise of Logic Locking [0.40980625270164805]
A locking technique is deemed secure if it resists a good array of attacks aimed at finding this correct key.
This paper challenges this one-key premise by introducing a more efficient attack methodology.
Our attack achieves a runtime reduction of up to 99.6% compared to the conventional attack that tries to find a single correct key.
arXiv Detail & Related papers (2024-08-22T19:05:13Z) - SubLock: Sub-Circuit Replacement based Input Dependent Key-based Logic Locking for Robust IP Protection [1.804933160047171]
Existing logic locking techniques are vulnerable to SAT-based attacks.
Several SAT-resistant logic locking methods are reported; they require significant overhead.
This paper proposes a novel input dependent key-based logic locking (IDKLL) that effectively prevents SAT-based attacks with low overhead.
arXiv Detail & Related papers (2024-06-27T11:17:06Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - LIPSTICK: Corruptibility-Aware and Explainable Graph Neural Network-based Oracle-Less Attack on Logic Locking [1.104960878651584]
We develop, train, and test a corruptibility-aware graph neural network-based oracle-less attack on logic locking.
Our model is explainable in the sense that we analyze what the machine learning model has interpreted in the training process and how it can perform a successful attack.
arXiv Detail & Related papers (2024-02-06T18:42:51Z) - Shortcuts Everywhere and Nowhere: Exploring Multi-Trigger Backdoor Attacks [64.68741192761726]
Backdoor attacks have become a significant threat to the pre-training and deployment of deep neural networks (DNNs)
In this study, we explore the concept of Multi-Trigger Backdoor Attacks (MTBAs), where multiple adversaries leverage different types of triggers to poison the same dataset.
arXiv Detail & Related papers (2024-01-27T04:49:37Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.