論文の概要: FDLite: A Single Stage Lightweight Face Detector Network
- arxiv url: http://arxiv.org/abs/2406.19107v1
- Date: Thu, 27 Jun 2024 11:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 14:17:52.528308
- Title: FDLite: A Single Stage Lightweight Face Detector Network
- Title(参考訳): FDLite: シングルステージ軽量顔検出ネットワーク
- Authors: Yogesh Aggarwal, Prithwijit Guha,
- Abstract要約: この研究の斬新さは、一般的に使われている損失関数と学習戦略のみを訓練しながら、軽量検出器の設計にある。
FDLiteは92.3%、89.8%、82.2%の平均精度(AP)をWIDER FACEデータセットの容易、中、硬サブセットで達成している。
- 参考スコア(独自算出の注目度): 2.5628953713168685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face detection is frequently attempted by using heavy pre-trained backbone networks like ResNet-50/101/152 and VGG16/19. Few recent works have also proposed lightweight detectors with customized backbones, novel loss functions and efficient training strategies. The novelty of this work lies in the design of a lightweight detector while training with only the commonly used loss functions and learning strategies. The proposed face detector grossly follows the established RetinaFace architecture. The first contribution of this work is the design of a customized lightweight backbone network (BLite) having 0.167M parameters with 0.52 GFLOPs. The second contribution is the use of two independent multi-task losses. The proposed lightweight face detector (FDLite) has 0.26M parameters with 0.94 GFLOPs. The network is trained on the WIDER FACE dataset. FDLite is observed to achieve 92.3\%, 89.8\%, and 82.2\% Average Precision (AP) on the easy, medium, and hard subsets of the WIDER FACE validation dataset, respectively.
- Abstract(参考訳): 顔検出は、ResNet-50/101/152やVGG16/19のような重いトレーニング済みのバックボーンネットワークを用いて頻繁に試みられる。
近年の研究では、バックボーンのカスタマイズ、新しい損失関数、効率的なトレーニング戦略を備えた軽量検出器も提案されている。
この研究の斬新さは、一般的に使われている損失関数と学習戦略のみを訓練しながら、軽量検出器の設計にある。
提案した顔検出器は、確立されたRetinaFaceアーキテクチャに大きく従っている。
この研究の最初の貢献は、0.167Mパラメータと0.52 GFLOPを持つカスタマイズされた軽量バックボーンネットワーク(BLite)の設計である。
2つ目の貢献は、2つの独立したマルチタスク損失の使用である。
提案された軽量顔検出器(FDLite)は0.26Mパラメータと0.94GFLOPを持つ。
ネットワークはWIDER FACEデータセットに基づいてトレーニングされる。
FDLiteは、WIDER FACE検証データセットの易、中、硬サブセットに対して、それぞれ92.3\%、89.8\%、82.2\%平均精度(AP)を達成する。
関連論文リスト
- RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets [10.748210940033484]
RSNetは、SAR画像における船舶検出を強化する軽量フレームワークである。
Waveletpool-ContextGuided (WCG)は、グローバルなコンテキスト理解を導くバックボーンである。
ウェーブレットプール・スターフュージョン (WSF) は、残っているウェーブレット要素の乗算構造を用いてネックとして導入された。
論文 参考訳(メタデータ) (2024-10-30T14:46:35Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - A Lightweight and Accurate Face Detection Algorithm Based on Retinaface [0.5076419064097734]
Retinaface に基づく軽量かつ高精度な顔検出アルゴリズム LAFD (Light and accurate face detection) を提案する。
アルゴリズムのバックボーンネットワークは、畳み込みカーネルのサイズを調整する修正されたMobileNetV3ネットワークである。
入力画像が前処理され、長さが1560px、幅が1200pxとなると、平均精度は86.2%となる。
論文 参考訳(メタデータ) (2023-08-08T15:36:57Z) - Tech Report: One-stage Lightweight Object Detectors [0.38073142980733]
この研究は、mAPと遅延の点でよく機能するワンステージ軽量検出器を設計するためのものである。
GPUとCPUを対象とするベースラインモデルでは、ベースラインモデルのバックボーンネットワークにおけるメイン操作の代わりに、さまざまな操作が適用される。
論文 参考訳(メタデータ) (2022-10-31T09:02:37Z) - EResFD: Rediscovery of the Effectiveness of Standard Convolution for
Lightweight Face Detection [13.357235715178584]
顔検出のための軽量バックボーンアーキテクチャとして,標準的な畳み込みブロックの有効性を再検討する。
チャネル切断された標準畳み込み層は精度と推論速度を向上できることを示す。
提案する検出器EResFDは,CPU上でのVGA画像推測に37.7msしか要しないWIDER FACE Hardサブセット上で80.4%のmAPを得た。
論文 参考訳(メタデータ) (2022-04-04T02:30:43Z) - EAutoDet: Efficient Architecture Search for Object Detection [110.99532343155073]
EAutoDetフレームワークは、1.4GPU日でオブジェクト検出のための実用的なバックボーンとFPNアーキテクチャを検出できる。
本稿では,一方のエッジ上での候補演算の重みを共有し,それらを一つの畳み込みに集約することでカーネル再利用手法を提案する。
特に、発見されたアーキテクチャは最先端のオブジェクト検出NAS法を超越し、120 FPSで40.1 mAP、49.2 mAP、41.3 FPSをCOCOテストデブセットで達成している。
論文 参考訳(メタデータ) (2022-03-21T05:56:12Z) - Lightweight Salient Object Detection in Optical Remote Sensing Images
via Feature Correlation [93.80710126516405]
本稿では,これらの問題に対処する軽量ORSI-SODソリューションであるCorrNetを提案する。
それぞれのコンポーネントのパラメータと計算を減らし、CorrNetは4.09Mのパラメータしか持たず、21.09GのFLOPで実行している。
2つの公開データセットの実験結果から、私たちの軽量なCorrNetは、26の最先端メソッドと比較して、競争力やパフォーマンスがさらに向上することが示された。
論文 参考訳(メタデータ) (2022-01-20T08:28:01Z) - Pixel Difference Networks for Efficient Edge Detection [71.03915957914532]
本稿では,Pixel Difference Network (PiDiNet) という軽量かつ効率的なエッジ検出アーキテクチャを提案する。
BSDS500、NYUD、Multicueのデータセットに関する大規模な実験が、その効果を示すために提供されている。
0.1M未満のパラメータを持つPiDiNetのより高速なバージョンは、200FPSのアーティファクトで同等のパフォーマンスを達成できる。
論文 参考訳(メタデータ) (2021-08-16T10:42:59Z) - Oriented R-CNN for Object Detection [61.78746189807462]
本研究では、オブジェクト指向R-CNNと呼ばれる、効果的でシンプルなオブジェクト指向オブジェクト検出フレームワークを提案する。
第1段階では,高品質な指向型提案をほぼ無償で直接生成する指向型領域提案ネットワーク(指向RPN)を提案する。
第2段階は、R-CNNヘッダーで、興味のある領域(オブジェクト指向のRoI)を精製し、認識する。
論文 参考訳(メタデータ) (2021-08-12T12:47:43Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
本稿では,新しい数ショット学習タスクのための特定のメトリックを生成するための,新しい深度メタジェネレーション手法を提案する。
本研究では,各タスクの識別基準を生成するのに十分なフレキシブルな3層深い注意ネットワークを用いて,メトリクスを構造化する。
特に挑戦的なケースでは、最先端の競合他社よりも驚くほどパフォーマンスが向上しています。
論文 参考訳(メタデータ) (2020-12-03T02:07:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。