Classification of Breast Cancer Histopathology Images using a Modified Supervised Contrastive Learning Method
- URL: http://arxiv.org/abs/2405.03642v2
- Date: Mon, 23 Sep 2024 20:08:53 GMT
- Title: Classification of Breast Cancer Histopathology Images using a Modified Supervised Contrastive Learning Method
- Authors: Matina Mahdizadeh Sani, Ali Royat, Mahdieh Soleymani Baghshah,
- Abstract summary: We improve the supervised contrastive learning method by leveraging both image-level labels and domain-specific augmentations to enhance model robustness.
We evaluate our method on the BreakHis dataset, which consists of breast cancer histopathology images.
This improvement corresponds to 93.63% absolute accuracy, highlighting the effectiveness of our approach in leveraging properties of data to learn more appropriate representation space.
- Score: 4.303291247305105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have reached remarkable achievements in medical image processing tasks, specifically in classifying and detecting various diseases. However, when confronted with limited data, these networks face a critical vulnerability, often succumbing to overfitting by excessively memorizing the limited information available. This work addresses the challenge mentioned above by improving the supervised contrastive learning method leveraging both image-level labels and domain-specific augmentations to enhance model robustness. This approach integrates self-supervised pre-training with a two-stage supervised contrastive learning strategy. In the first stage, we employ a modified supervised contrastive loss that not only focuses on reducing false negatives but also introduces an elimination effect to address false positives. In the second stage, a relaxing mechanism is introduced that refines positive and negative pairs based on similarity, ensuring that only relevant image representations are aligned. We evaluate our method on the BreakHis dataset, which consists of breast cancer histopathology images, and demonstrate an increase in classification accuracy by 1.45% in the image level, compared to the state-of-the-art method. This improvement corresponds to 93.63% absolute accuracy, highlighting the effectiveness of our approach in leveraging properties of data to learn more appropriate representation space.
Related papers
- CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation [7.6057981800052845]
CrossMatch is a novel framework that integrates knowledge distillation with dual strategies-image-level and feature-level to improve the model's learning from both labeled and unlabeled data.
Our method significantly surpasses other state-of-the-art techniques in standard benchmarks by effectively minimizing the gap between training on labeled and unlabeled data.
arXiv Detail & Related papers (2024-05-01T07:16:03Z) - Siamese Networks with Soft Labels for Unsupervised Lesion Detection and
Patch Pretraining on Screening Mammograms [7.917505566910886]
We propose an alternative method that uses contralateral mammograms to train a neural network to encode similar embeddings.
Our method demonstrates superior performance in mammogram patch classification compared to existing self-supervised learning methods.
arXiv Detail & Related papers (2024-01-10T22:27:37Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
We propose embedding metric learning into the first stage of the two-stage framework specially to help the feature extractor learn to extract more discriminative feature representations.
Experiments mainly on three medical image datasets show that the proposed approach consistently outperforms existing onestage and two-stage approaches.
arXiv Detail & Related papers (2022-07-14T14:57:01Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
We present the first mix-up self-supervised learning framework for contrast-agnostic applications.
We address the low variance across images based on cross-domain mix-up and build the pretext task based on image reconstruction and transparency prediction.
arXiv Detail & Related papers (2022-04-02T16:58:36Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Exploring Feature Representation Learning for Semi-supervised Medical
Image Segmentation [30.608293915653558]
We present a two-stage framework for semi-supervised medical image segmentation.
Key insight is to explore the feature representation learning with labeled and unlabeled (i.e., pseudo labeled) images.
A stage-adaptive contrastive learning method is proposed, containing a boundary-aware contrastive loss.
We present an aleatoric uncertainty-aware method, namely AUA, to generate higher-quality pseudo labels.
arXiv Detail & Related papers (2021-11-22T05:06:12Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
arXiv Detail & Related papers (2021-06-16T22:15:28Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Contrastive Rendering for Ultrasound Image Segmentation [59.23915581079123]
The lack of sharp boundaries in US images remains an inherent challenge for segmentation.
We propose a novel and effective framework to improve boundary estimation in US images.
Our proposed method outperforms state-of-the-art methods and has the potential to be used in clinical practice.
arXiv Detail & Related papers (2020-10-10T07:14:03Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.