Magnification-independent Histopathological Image Classification with
Similarity-based Multi-scale Embeddings
- URL: http://arxiv.org/abs/2107.01063v1
- Date: Fri, 2 Jul 2021 13:18:45 GMT
- Title: Magnification-independent Histopathological Image Classification with
Similarity-based Multi-scale Embeddings
- Authors: Yibao Sun, Xingru Huang, Yaqi Wang, Huiyu Zhou, Qianni Zhang
- Abstract summary: We propose an approach that learns similarity-based multi-scale embeddings for magnification-independent image classification.
In particular, a pair loss and a triplet loss are leveraged to learn similarity-based embeddings from image pairs or image triplets.
The SMSE achieves the best performance on the BreakHis benchmark with an improvement ranging from 5% to 18% compared to previous methods.
- Score: 12.398787062519034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The classification of histopathological images is of great value in both
cancer diagnosis and pathological studies. However, multiple reasons, such as
variations caused by magnification factors and class imbalance, make it a
challenging task where conventional methods that learn from image-label
datasets perform unsatisfactorily in many cases. We observe that tumours of the
same class often share common morphological patterns. To exploit this fact, we
propose an approach that learns similarity-based multi-scale embeddings (SMSE)
for magnification-independent histopathological image classification. In
particular, a pair loss and a triplet loss are leveraged to learn
similarity-based embeddings from image pairs or image triplets. The learned
embeddings provide accurate measurements of similarities between images, which
are regarded as a more effective form of representation for histopathological
morphology than normal image features. Furthermore, in order to ensure the
generated models are magnification-independent, images acquired at different
magnification factors are simultaneously fed to networks during training for
learning multi-scale embeddings. In addition to the SMSE, to eliminate the
impact of class imbalance, instead of using the hard sample mining strategy
that intuitively discards some easy samples, we introduce a new reinforced
focal loss to simultaneously punish hard misclassified samples while
suppressing easy well-classified samples. Experimental results show that the
SMSE improves the performance for histopathological image classification tasks
for both breast and liver cancers by a large margin compared to previous
methods. In particular, the SMSE achieves the best performance on the BreakHis
benchmark with an improvement ranging from 5% to 18% compared to previous
methods using traditional features.
Related papers
- Local Manifold Learning for No-Reference Image Quality Assessment [68.9577503732292]
We propose an innovative framework that integrates local manifold learning with contrastive learning for No-Reference Image Quality Assessment (NR-IQA)
Our approach demonstrates a better performance compared to state-of-the-art methods in 7 standard datasets.
arXiv Detail & Related papers (2024-06-27T15:14:23Z) - Classification of Breast Cancer Histopathology Images using a Modified Supervised Contrastive Learning Method [4.303291247305105]
We improve the supervised contrastive learning method by leveraging both image-level labels and domain-specific augmentations to enhance model robustness.
We evaluate our method on the BreakHis dataset, which consists of breast cancer histopathology images.
This improvement corresponds to 93.63% absolute accuracy, highlighting the effectiveness of our approach in leveraging properties of data to learn more appropriate representation space.
arXiv Detail & Related papers (2024-05-06T17:06:11Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
We propose embedding metric learning into the first stage of the two-stage framework specially to help the feature extractor learn to extract more discriminative feature representations.
Experiments mainly on three medical image datasets show that the proposed approach consistently outperforms existing onestage and two-stage approaches.
arXiv Detail & Related papers (2022-07-14T14:57:01Z) - Trusted Multi-Scale Classification Framework for Whole Slide Image [24.38749637821446]
We propose a trusted multi-scale classification framework for gigapixels whole-slide image (WSI)
Our framework can jointly classification modeling, estimating the uncertainty of each magnification of a microscope and integrate the evidence from different magnification.
arXiv Detail & Related papers (2022-07-12T03:57:08Z) - A Semi-Supervised Classification Method of Apicomplexan Parasites and
Host Cell Using Contrastive Learning Strategy [6.677163460963862]
This paper proposes a semi-supervised classification method for three kinds of apicomplexan parasites and non-infected host cells microscopic images.
It uses a small number of labeled data and a large number of unlabeled data for training.
In the case where only 1% of microscopic images are labeled, the proposed method reaches an accuracy of 94.90% in a generalized testing set.
arXiv Detail & Related papers (2021-04-14T02:34:50Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Melanoma Detection using Adversarial Training and Deep Transfer Learning [6.22964000148682]
We propose a two-stage framework for automatic classification of skin lesion images.
In the first stage, we leverage the inter-class variation of the data distribution for the task of conditional image synthesis.
In the second stage, we train a deep convolutional neural network for skin lesion classification.
arXiv Detail & Related papers (2020-04-14T22:46:20Z) - Breast Cancer Histopathology Image Classification and Localization using
Multiple Instance Learning [2.4178424543973267]
Computer-aided pathology to analyze microscopic histopathology images for diagnosis can bring the cost and delays of diagnosis down.
Deep learning in histopathology has attracted attention over the last decade of achieving state-of-the-art performance in classification and localization tasks.
We present classification and localization results on two publicly available BreakHIS and BACH dataset.
arXiv Detail & Related papers (2020-02-16T10:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.