AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2406.19251v1
- Date: Thu, 27 Jun 2024 15:18:21 GMT
- Title: AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
- Authors: Jia Fu, Xiaoting Qin, Fangkai Yang, Lu Wang, Jue Zhang, Qingwei Lin, Yubo Chen, Dongmei Zhang, Saravan Rajmohan, Qi Zhang,
- Abstract summary: Recent advancements in Large Language Models have transformed ML/AI development.
Recent advancements in Large Language Models have transformed AutoML principles for the Retrieval-Augmented Generation (RAG) systems.
- Score: 37.456499537121886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models have transformed ML/AI development, necessitating a reevaluation of AutoML principles for the Retrieval-Augmented Generation (RAG) systems. To address the challenges of hyper-parameter optimization and online adaptation in RAG, we propose the AutoRAG-HP framework, which formulates the hyper-parameter tuning as an online multi-armed bandit (MAB) problem and introduces a novel two-level Hierarchical MAB (Hier-MAB) method for efficient exploration of large search spaces. We conduct extensive experiments on tuning hyper-parameters, such as top-k retrieved documents, prompt compression ratio, and embedding methods, using the ALCE-ASQA and Natural Questions datasets. Our evaluation from jointly optimization all three hyper-parameters demonstrate that MAB-based online learning methods can achieve Recall@5 $\approx 0.8$ for scenarios with prominent gradients in search space, using only $\sim20\%$ of the LLM API calls required by the Grid Search approach. Additionally, the proposed Hier-MAB approach outperforms other baselines in more challenging optimization scenarios. The code will be made available at https://aka.ms/autorag.
Related papers
- LLM can Achieve Self-Regulation via Hyperparameter Aware Generation [88.69052513433603]
Large Language Models (LLMs) employ diverse decoding strategies to control the generated text.
Are LLMs conscious of the existence of these decoding strategies and capable of regulating themselves?
We propose a novel text generation paradigm termed Hyperparameter Aware Generation (HAG)
arXiv Detail & Related papers (2024-02-17T11:18:22Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
We propose an easy-to-implement online reinforcement learning (online RL) framework called textttMEX.
textttMEX integrates estimation and planning components while balancing exploration exploitation automatically.
It can outperform baselines by a stable margin in various MuJoCo environments with sparse rewards.
arXiv Detail & Related papers (2023-05-29T17:25:26Z) - Online Continuous Hyperparameter Optimization for Generalized Linear Contextual Bandits [55.03293214439741]
In contextual bandits, an agent sequentially makes actions from a time-dependent action set based on past experience.
We propose the first online continuous hyperparameter tuning framework for contextual bandits.
We show that it could achieve a sublinear regret in theory and performs consistently better than all existing methods on both synthetic and real datasets.
arXiv Detail & Related papers (2023-02-18T23:31:20Z) - Two-step hyperparameter optimization method: Accelerating hyperparameter
search by using a fraction of a training dataset [0.15420205433587747]
We present a two-step HPO method as a strategic solution to curbing computational demands and wait times.
We present our recent application of the two-step HPO method to the development of neural network emulators for aerosol activation.
arXiv Detail & Related papers (2023-02-08T02:38:26Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
We introduce a new class of HPO method and explore how the low-rank factorization of intermediate layers of a convolutional network can be used to define an analytical response surface.
We quantify how this surface behaves as a surrogate to model performance and can be solved using a trust-region search algorithm, which we call autoHyper.
arXiv Detail & Related papers (2021-11-28T05:27:34Z) - HyP-ABC: A Novel Automated Hyper-Parameter Tuning Algorithm Using
Evolutionary Optimization [1.6114012813668934]
We propose HyP-ABC, an automatic hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach.
Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned.
arXiv Detail & Related papers (2021-09-11T16:45:39Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
We build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets.
We use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper- parameter search space to select a better combination.
arXiv Detail & Related papers (2020-06-03T08:53:48Z) - Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
Data to Hyper-Parameters [3.37314595161109]
We propose an efficient automatic parameter optimization approach, which is based on the mapping from data to the corresponding hyper- parameters.
We show that the proposed approaches outperform the state-of-the-art apporaches significantly.
arXiv Detail & Related papers (2020-03-03T19:26:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.