論文の概要: Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation
- arxiv url: http://arxiv.org/abs/2406.19400v1
- Date: Thu, 23 May 2024 11:05:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:48:25.057654
- Title: Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation
- Title(参考訳): 画像セグメンテーションのための変分形状コンパクト性に先立つ深部畳み込みニューラルネットワーク
- Authors: Kehui Zhang, Lingfeng Li, Hao Liu, Jing Yuan, Xue-Cheng Tai,
- Abstract要約: 形状コンパクト性は、多くの画像分割タスクにおいて興味深い領域を記述するための重要な幾何学的性質である。
そこで本稿では,従来の形状特徴を取り入れた画像分割問題を解くために,新しい2つのアルゴリズムを提案する。
提案アルゴリズムは、ノイズの多い画像データセット上で20%のトレーニングをすることで、IoUを大幅に改善する。
- 参考スコア(独自算出の注目度): 7.314877483509877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shape compactness is a key geometrical property to describe interesting regions in many image segmentation tasks. In this paper, we propose two novel algorithms to solve the introduced image segmentation problem that incorporates a shape-compactness prior. Existing algorithms for such a problem often suffer from computational inefficiency, difficulty in reaching a local minimum, and the need to fine-tune the hyperparameters. To address these issues, we propose a novel optimization model along with its equivalent primal-dual model and introduce a new optimization algorithm based on primal-dual threshold dynamics (PD-TD). Additionally, we relax the solution constraint and propose another novel primal-dual soft threshold-dynamics algorithm (PD-STD) to achieve superior performance. Based on the variational explanation of the sigmoid layer, the proposed PD-STD algorithm can be integrated into Deep Neural Networks (DNNs) to enforce compact regions as image segmentation results. Compared to existing deep learning methods, extensive experiments demonstrated that the proposed algorithms outperformed state-of-the-art algorithms in numerical efficiency and effectiveness, especially while applying to the popular networks of DeepLabV3 and IrisParseNet with higher IoU, dice, and compactness metrics on noisy Iris datasets. In particular, the proposed algorithms significantly improve IoU by 20% training on a highly noisy image dataset.
- Abstract(参考訳): 形状コンパクト性は、多くの画像分割タスクにおいて興味深い領域を記述するための重要な幾何学的性質である。
本稿では,従来の形状適合性を組み込んだ画像分割問題の解法として,新しい2つのアルゴリズムを提案する。
そのような問題の既存のアルゴリズムは、計算の非効率性、局所的な最小値に達することの難しさ、ハイパーパラメータを微調整する必要性に悩まされることが多い。
これらの問題に対処するために、等価な原始双対モデルと共に新しい最適化モデルを提案し、原始双対しきい値力学(PD-TD)に基づく新しい最適化アルゴリズムを提案する。
さらに、解の制約を緩和し、より優れた性能を実現するために、新しい原始二元ソフトしきい値力学アルゴリズム(PD-STD)を提案する。
シグモイド層の変動的説明に基づき,提案手法をディープニューラルネットワーク(DNN)に統合し,画像分割結果としてコンパクト領域を強制することができる。
既存のディープラーニング手法と比較して、提案アルゴリズムは数値効率と有効性において最先端のアルゴリズムよりも優れており、特に雑音の多いIrisデータセット上のIoU、ダイス、コンパクト度測定値の高いDeepLabV3とIrisParseNetの一般的なネットワークに適用されている。
特に、提案アルゴリズムは、ノイズの多い画像データセット上で20%のトレーニングをすることで、IoUを大幅に改善する。
関連論文リスト
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
そこで本研究では,局所探索機能を組み込んだ2段階学習手法と集団最適化アルゴリズムを併用した新しい手法を提案する。
実験の結果,提案手法は最先端の勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-26T17:31:15Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
本稿では,二元FBと二元Chambolle-Pockアルゴリズムの両方に基づいて,ガウス分母タスクのためのPNNを統一的に構築するフレームワークを提案する。
また、これらのアルゴリズムの高速化により、関連するNN層におけるスキップ接続が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-06T15:32:16Z) - A Compound Gaussian Least Squares Algorithm and Unrolled Network for
Linear Inverse Problems [1.283555556182245]
本稿では,線形逆問題に対する2つの新しいアプローチを提案する。
1つ目は、正規化された最小二乗目的関数を最小化する反復アルゴリズムである。
2つ目は、反復アルゴリズムの「アンロール」または「アンフォールディング」に対応するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2023-05-18T17:05:09Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - A Deep-Unfolded Reference-Based RPCA Network For Video
Foreground-Background Separation [86.35434065681925]
本稿では,ロバスト主成分分析(RPCA)問題に対するディープアンフォールディングに基づくネットワーク設計を提案する。
既存の設計とは異なり,本手法は連続するビデオフレームのスパース表現間の時間的相関をモデル化することに焦点を当てている。
移動MNISTデータセットを用いた実験により、提案したネットワークは、ビデオフォアグラウンドとバックグラウンドの分離作業において、最近提案された最先端のRPCAネットワークより優れていることが示された。
論文 参考訳(メタデータ) (2020-10-02T11:40:09Z) - Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks [14.380314061763508]
反復代理モデル最適化(ISMO)と呼ばれる新しい能動学習アルゴリズムを提案する。
このアルゴリズムはディープニューラルネットワークに基づいており、その重要な特徴は、ディープニューラルネットワークと基礎となる標準最適化アルゴリズムの間のフィードバックループを通じて、トレーニングデータの反復的な選択である。
論文 参考訳(メタデータ) (2020-08-13T07:31:07Z) - Deep Reinforcement Learning for Field Development Optimization [0.0]
本研究の目的は,畳み込みニューラルネットワーク(CNN)深部強化学習(DRL)アルゴリズムをフィールド開発最適化問題に適用することである。
近似ポリシー最適化 (PPO) アルゴリズムは2つのCNNアーキテクチャで様々な層と構成を持つ。
両ネットワークは、ハイブリッド粒子群最適化(PSO-MADS)アルゴリズムと比較して満足な結果をもたらすポリシーを得た。
論文 参考訳(メタデータ) (2020-08-05T06:26:13Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。