論文の概要: Implementation of neural network operators with applications to remote sensing data
- arxiv url: http://arxiv.org/abs/2412.00375v1
- Date: Sat, 30 Nov 2024 06:51:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:23.284128
- Title: Implementation of neural network operators with applications to remote sensing data
- Title(参考訳): ニューラルネットワーク演算子の実装とリモートセンシングデータへの応用
- Authors: Danilo Costarelli, Michele Piconi,
- Abstract要約: 双曲型タンジェントシグモダル関数によって活性化される多次元ニューラルネットワーク(NN)演算子の理論に基づいて2つのアルゴリズムを示す。
本稿では,NNに基づくリモートセンシングデータのモデリングと再スケール/エンハンスメントのためのアルゴリズムのいくつかの応用について論じる。
- 参考スコア(独自算出の注目度): 0.41436032949434404
- License:
- Abstract: In this paper, we provide two algorithms based on the theory of multidimensional neural network (NN) operators activated by hyperbolic tangent sigmoidal functions. Theoretical results are recalled to justify the performance of the here implemented algorithms. Specifically, the first algorithm models multidimensional signals (such as digital images), while the second one addresses the problem of rescaling and enhancement of the considered data. We discuss several applications of the NN-based algorithms for modeling and rescaling/enhancement remote sensing data (represented as images), with numerical experiments conducted on a selection of remote sensing (RS) images from the (open access) RETINA dataset. A comparison with classical interpolation methods, such as bilinear and bicubic interpolation, shows that the proposed algorithms outperform the others, particularly in terms of the Structural Similarity Index (SSIM).
- Abstract(参考訳): 本稿では,多次元ニューラルネットワーク(NN)演算子の理論に基づく2つのアルゴリズムを提案する。
理論的結果は、ここで実装されたアルゴリズムの性能を正当化するためにリコールされる。
具体的には、第1のアルゴリズムは多次元信号(デジタル画像など)をモデル化し、第2のアルゴリズムは、検討されたデータの再スケーリングと拡張の問題に対処する。
NNベースのリモートセンシングデータ(画像として表現される)のモデリング・再スケーリング・エンハンスメントのためのアルゴリズムのいくつかの応用について検討し、RETINAデータセットからリモートセンシング(RS)画像を選択する数値実験を行った。
双線形補間法やバイコビック補間法のような古典的補間法との比較により、提案アルゴリズムは、特に構造類似度指数(SSIM)において、他のアルゴリズムよりも優れていることが示された。
関連論文リスト
- Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation [7.314877483509877]
形状コンパクト性は、多くの画像分割タスクにおいて興味深い領域を記述するための重要な幾何学的性質である。
そこで本稿では,従来の形状特徴を取り入れた画像分割問題を解くために,新しい2つのアルゴリズムを提案する。
提案アルゴリズムは、ノイズの多い画像データセット上で20%のトレーニングをすることで、IoUを大幅に改善する。
論文 参考訳(メタデータ) (2024-05-23T11:05:35Z) - Discrete Neural Algorithmic Reasoning [18.497863598167257]
本稿では,有限状態の組合せとして,ニューラル推論器に実行軌跡の維持を強制することを提案する。
アルゴリズムの状態遷移の監督で訓練されたモデルでは、元のアルゴリズムと完全に整合することができる。
論文 参考訳(メタデータ) (2024-02-18T16:03:04Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - A PINN Approach to Symbolic Differential Operator Discovery with Sparse
Data [0.0]
本研究では,実験データが少ない状況下で微分作用素の記号的発見を行う。
微分方程式における未知の隠れ項の表現を学習するニューラルネットワークを追加することで、PINNのアプローチを変更する。
このアルゴリズムは微分方程式に対する代理解と隠れた項のブラックボックス表現の両方を与える。
論文 参考訳(メタデータ) (2022-12-09T02:09:37Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Similarity of Neural Networks with Gradients [8.804507286438781]
本稿では,特徴ベクトルと勾配ベクトルの両方を利用してニューラルネットワークの表現を設計することを提案する。
提案手法はニューラルネットワークの類似性を計算するための最先端の手法を提供する。
論文 参考訳(メタデータ) (2020-03-25T17:04:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。