The Kepler problem on the lattice
- URL: http://arxiv.org/abs/2406.19423v1
- Date: Wed, 26 Jun 2024 23:16:35 GMT
- Title: The Kepler problem on the lattice
- Authors: Diego Sanjinés, Evaristo Mamani, Javier Velasco,
- Abstract summary: We study the motion of a particle in a 3-dimensional lattice in the presence of a Coulomb potential.
We demonstrate semiclassicaly that the trajectories will always remain in a plane which can be taken as a rectangular lattice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the motion of a particle in a 3-dimensional lattice in the presence of a Coulomb potential, but we demonstrate semiclassicaly that the trajectories will always remain in a plane which can be taken as a rectangular lattice. The Hamiltonian model for this problem is the conservative tight-binding one with lattice constants a, b and hopping elements A, B in the XY axes, respectively. We use the semiclassical and quantum formalisms; for the latter we apply the pseudo-spectral algorithm to integrate the Schroedinger equation. Since the lattice discrete subspace is not isotropic, the angular momentum is not conserved, which has interesting consequences as chaotic trajectories and precession trajectories, similar to the astronomical precession trajectories due to non-central gravitational forces, notably, the non-relativistic Mercury's perihelion precession. Although the elements of the mass tensor are naturally different in a rectangular lattice, these can be chosen to be still different in the continuum, which permits to study the motion with the usual Newtonian kinetic energies. We calculate also the contour plots of an initial Gaussian wavepacket as it moves in the lattice and we propose an "intrinsec angular momentum" associated to its asymmetrical deformation, such that the quantum and semiclassical angular momenta could be simply related.
Related papers
- Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - Interacting chiral fermions on the lattice with matrix product operator norms [37.69303106863453]
We develop a Hamiltonian formalism for simulating interacting chiral fermions on the lattice.
The fermion doubling problem is circumvented by constructing a Fock space endowed with a semi-definite norm.
We demonstrate that the scaling limit of the free model recovers the chiral fermion field.
arXiv Detail & Related papers (2024-05-16T17:46:12Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Entanglement Hamiltonian of a nonrelativistic Fermi gas [0.0]
We study the entanglement Hamiltonian for a spherical domain in the ground state of a nonrelativistic free-fermion gas in arbitrary dimensions.
We show that the entanglement spectrum in each sector is identical to that of a hopping chain in a linear potential, with the angular momentum playing the role of the subsystem boundary.
arXiv Detail & Related papers (2023-11-27T22:27:56Z) - Coulomb problem for classical spinning particle [0.0]
We consider a weakly relativistic charged particle with an arbitrary spin in central potential $e/r$ in terms of classical mechanics.
We show that the spin-orbital interaction causes the precession of the plane of orbit around the vector of total angular momentum.
The effective potential for in-plane motion is central, with the corrections to Coulomb terms coming from spin-orbital interaction.
arXiv Detail & Related papers (2023-03-29T11:55:42Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Out-of-equilibrium dynamics of the Kitaev model on the Bethe lattice via
coupled Heisenberg equations [23.87373187143897]
We study the isotropic Kitaev spin-$1/2$ model on the Bethe lattice.
We take a straightforward approach of solving Heisenberg equations for a tailored subset of spin operators.
As an example, we calculate the time-dependent expectation value of this observable for a factorized translation-invariant.
arXiv Detail & Related papers (2021-10-25T17:37:33Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Universal semiclassical equations based on the quantum metric [0.0]
We derive semiclassical equations of motion for an accelerated wavepacket in a two-band system.
We show that these equations can be formulated in terms of the static band geometry described by the quantum metric.
arXiv Detail & Related papers (2021-06-23T13:24:29Z) - From Kerr to Heisenberg [0.0]
We consider the space-time of a charged mass endowed with an angular momentum.
The peculiar symmetry, though exact, is usually described in terms of the gravito-magnetic field originated by the angular momentum of the source.
arXiv Detail & Related papers (2021-03-05T15:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.