The sum of entanglement and subsystem coherence is invariant under quantum reference frame transformations
- URL: http://arxiv.org/abs/2406.19448v1
- Date: Thu, 27 Jun 2024 18:00:02 GMT
- Title: The sum of entanglement and subsystem coherence is invariant under quantum reference frame transformations
- Authors: Carlo Cepollaro, Ali Akil, Paweł Cieśliński, Anne-Catherine de la Hamette, Časlav Brukner,
- Abstract summary: Recent work on quantum reference frames (QRFs) has demonstrated that superposition and entanglement are properties that change under QRF transformations.
We find a trade-off between entanglement and subsystem coherence under a QRF transformation, in the form of a conservation theorem for their sum.
We discuss the implications of this interplay for violations of Bell's inequalities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work on quantum reference frames (QRFs) has demonstrated that superposition and entanglement are properties that change under QRF transformations. Given their utility in quantum information processing, it is important to understand how a mere change of perspective can produce or reduce these resources. Here we find a trade-off between entanglement and subsystem coherence under a QRF transformation, in the form of a conservation theorem for their sum, for two pairs of measures. Moreover, we find a weaker trade-off for any possible pair of measures. Finally, we discuss the implications of this interplay for violations of Bell's inequalities, clarifying that for any choice of QRF, there is a quantum resource responsible for the violation. These findings contribute to a better understanding of the quantum information theoretic aspects of QRFs, offering a foundation for future exploration in both quantum theory and quantum gravity.
Related papers
- Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum reference frames, revisited [0.0]
We point out potential inconsistencies in the mainstream approach to this subject.
We reject the notion that transformations between QRFs can be represented by unitary operators.
An experimental protocol, capable of empirically distinguishing between competing definitions of the term, is also proposed.
arXiv Detail & Related papers (2023-12-06T18:15:52Z) - Quantifying High-Order Interdependencies in Entangled Quantum States [43.70611649100949]
We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
arXiv Detail & Related papers (2023-10-05T17:00:13Z) - Quantum Reference Frames for Lorentz Symmetry [0.0]
We introduce a reformulation of relativistic quantum mechanics independent of any notion of preferred temporal slicing.
We define transformations that switch between the perspectives of different relativistic QRFs.
We analyse two effects, superposition of time dilations and superposition of length contractions, that arise only if the reference frames exhibit both relativistic and quantum-mechanical features.
arXiv Detail & Related papers (2022-12-28T20:04:22Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Perspective-neutral approach to quantum frame covariance for general
symmetry groups [0.0]
Internal quantum reference frames (QRFs) appear widely in the literature on quantum gravity, gauge theories and quantum foundations.
This is a framework that links internal QRF perspectives via a manifestly gauge-invariant Hilbert space in the form of "quantum coordinate transformations"
We reveal new effects: (i) QRFs with non-trivial orientation isotropy groups can only resolve isotropy-group-invariant properties of other subsystems; (ii) in the absence of symmetries, the internal perspective Hilbert space "rotates" through the kinematical subsystem Hilbert space as the QR
arXiv Detail & Related papers (2021-10-26T16:19:24Z) - Shannon theory for quantum systems and beyond: information compression
for fermions [68.8204255655161]
We show that entanglement fidelity in the fermionic case is capable of evaluating the preservation of correlations.
We introduce a fermionic version of the source coding theorem showing that, as in the quantum case, the von Neumann entropy is the minimal rate for which a fermionic compression scheme exists.
arXiv Detail & Related papers (2021-06-09T10:19:18Z) - Assessing Relational Quantum Mechanics [0.0]
Quantum Mechanics (RQM) is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems.
We find that RQM fails to address the conceptual problems of standard quantum mechanics--related to the lack of clarity in its behavior.
We conclude that RQM is unsuccessful in its attempt to provide a satisfactory understanding of the quantum world.
arXiv Detail & Related papers (2021-05-27T17:47:28Z) - Quantum Relativity of Subsystems [58.720142291102135]
We show that different reference frame perspectives induce different sets of subsystem observable algebras, which leads to a gauge-invariant, frame-dependent notion of subsystems and entanglement.
Such a QRF perspective does not inherit the distinction between subsystems in terms of the corresponding tensor factorizability of the kinematical Hilbert space and observable algebra.
Since the condition for this to occur is contingent on the choice of QRF, the notion of subsystem locality is frame-dependent.
arXiv Detail & Related papers (2021-03-01T19:00:01Z) - R\'{e}nyi formulation of uncertainty relations for POVMs assigned to a
quantum design [0.0]
Information entropies provide powerful and flexible way to express restrictions imposed by the uncertainty principle.
In this paper, we obtain uncertainty relations in terms of min-entropies and R'enyi entropies for POVMs assigned to a quantum design.
arXiv Detail & Related papers (2020-04-12T09:44:44Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.