Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal Structure
- URL: http://arxiv.org/abs/2406.19503v1
- Date: Thu, 27 Jun 2024 19:36:26 GMT
- Title: Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal Structure
- Authors: Christine W Bang, Janine Witte, Ronja Foraita, Vanessa Didelez,
- Abstract summary: Methods of causal discovery aim to identify causal structures in a data driven way.
Existing algorithms are known to be unstable and sensitive to statistical errors.
We present an algorithm that exploits temporal structure, so-called tiered background knowledge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Methods of causal discovery aim to identify causal structures in a data driven way. Existing algorithms are known to be unstable and sensitive to statistical errors, and are therefore rarely used with biomedical or epidemiological data. We present an algorithm that efficiently exploits temporal structure, so-called tiered background knowledge, for estimating causal structures. Tiered background knowledge is readily available from, e.g., cohort or registry data. When used efficiently it renders the algorithm more robust to statistical errors and ultimately increases accuracy in finite samples. We describe the algorithm and illustrate how it proceeds. Moreover, we offer formal proofs as well as examples of desirable properties of the algorithm, which we demonstrate empirically in an extensive simulation study. To illustrate its usefulness in practice, we apply the algorithm to data from a children's cohort study investigating the interplay of diet, physical activity and other lifestyle factors for health outcomes.
Related papers
- Learning to refine domain knowledge for biological network inference [2.209921757303168]
Perturbation experiments allow biologists to discover causal relationships between variables of interest.
The sparsity and high dimensionality of these data pose significant challenges for causal structure learning algorithms.
We propose an amortized algorithm for refining domain knowledge, based on data observations.
arXiv Detail & Related papers (2024-10-18T12:53:23Z) - Predictive Coding beyond Correlations [59.47245250412873]
We show how one of such algorithms, called predictive coding, is able to perform causal inference tasks.
First, we show how a simple change in the inference process of predictive coding enables to compute interventions without the need to mutilate or redefine a causal graph.
arXiv Detail & Related papers (2023-06-27T13:57:16Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Latent Properties of Lifelong Learning Systems [59.50307752165016]
We introduce an algorithm-agnostic explainable surrogate-modeling approach to estimate latent properties of lifelong learning algorithms.
We validate the approach for estimating these properties via experiments on synthetic data.
arXiv Detail & Related papers (2022-07-28T20:58:13Z) - A Meta-Reinforcement Learning Algorithm for Causal Discovery [3.4806267677524896]
Causal structures can enable models to go beyond pure correlation-based inference.
Finding causal structures from data poses a significant challenge both in computational effort and accuracy.
We develop a meta-reinforcement learning algorithm that performs causal discovery by learning to perform interventions.
arXiv Detail & Related papers (2022-07-18T09:26:07Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
Causal discovery from observational data is an important tool in many branches of science.
In the large sample limit, sound and complete causal discovery algorithms have been previously introduced.
However, only finite training data is available, which limits the power of statistical tests used by these algorithms.
arXiv Detail & Related papers (2021-07-11T09:24:49Z) - Information fusion between knowledge and data in Bayesian network
structure learning [5.994412766684843]
This paper describes and evaluates a set of information fusion methods that have been implemented in the open-source Bayesys structure learning system.
The results are illustrated both with limited and big data, with application to three BN structure learning algorithms available in Bayesys.
arXiv Detail & Related papers (2021-01-31T15:45:29Z) - Causal Discovery from Incomplete Data using An Encoder and Reinforcement
Learning [2.4469484645516837]
We propose an approach to discover causal structures from incomplete data by using a novel encoder and reinforcement learning (RL)
The encoder is designed for missing data imputation as well as feature extraction.
Our method takes the incomplete observational data as input and generates a causal structure graph.
arXiv Detail & Related papers (2020-06-09T23:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.