MLXP: A Framework for Conducting Replicable Experiments in Python
- URL: http://arxiv.org/abs/2402.13831v2
- Date: Mon, 17 Jun 2024 14:16:16 GMT
- Title: MLXP: A Framework for Conducting Replicable Experiments in Python
- Authors: Michael Arbel, Alexandre Zouaoui,
- Abstract summary: We propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python.
It streamlines the experimental process with minimal overhead while ensuring a high level of practitioner overhead.
- Score: 63.37350735954699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Replicability in machine learning (ML) research is increasingly concerning due to the utilization of complex non-deterministic algorithms and the dependence on numerous hyper-parameter choices, such as model architecture and training datasets. Ensuring reproducible and replicable results is crucial for advancing the field, yet often requires significant technical effort to conduct systematic and well-organized experiments that yield robust conclusions. Several tools have been developed to facilitate experiment management and enhance reproducibility; however, they often introduce complexity that hinders adoption within the research community, despite being well-handled in industrial settings. To address the challenge of low adoption, we propose MLXP, an open-source, simple, and lightweight experiment management tool based on Python, available at https://github.com/inria-thoth/mlxp . MLXP streamlines the experimental process with minimal practitioner overhead while ensuring a high level of reproducibility.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Reliable edge machine learning hardware for scientific applications [34.87898436984149]
Extreme data rate scientific experiments create massive amounts of data that require efficient ML edge processing.
We discuss approaches to developing and validating reliable algorithms at the scientific edge under such strict latency, resource, power, and area requirements.
arXiv Detail & Related papers (2024-06-27T20:45:08Z) - Julearn: an easy-to-use library for leakage-free evaluation and
inspection of ML models [0.23301643766310373]
We present the rationale behind julearn's design, its core features, and showcase three examples of previously-published research projects.
Julearn aims to simplify the entry into the machine learning world by providing an easy-to-use environment with built in guards against some of the most common ML pitfalls.
arXiv Detail & Related papers (2023-10-19T08:21:12Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - PyExperimenter: Easily distribute experiments and track results [63.871474825689134]
PyExperimenter is a tool to facilitate the setup, documentation, execution, and subsequent evaluation of results from an empirical study of algorithms.
It is intended to be used by researchers in the field of artificial intelligence, but is not limited to those.
arXiv Detail & Related papers (2023-01-16T10:43:02Z) - schlably: A Python Framework for Deep Reinforcement Learning Based
Scheduling Experiments [0.3441021278275805]
schlably is a Python-based framework that provides researchers a comprehensive toolset to facilitate the development of PS solution strategies based on DRL.
schlably eliminates the redundant overhead work that the creation of a sturdy and flexible backbone requires.
arXiv Detail & Related papers (2023-01-10T19:27:11Z) - Active Learning-Based Optimization of Scientific Experimental Design [1.9705094859539976]
Active learning (AL) is a machine learning algorithm that can achieve greater accuracy with fewer labeled training instances.
This article performs a retrospective study on a drug response dataset using the proposed AL scheme.
It shows that scientific experimental design, instead of being manually set, can be optimized by AL.
arXiv Detail & Related papers (2021-12-29T20:02:35Z) - dagger: A Python Framework for Reproducible Machine Learning Experiment
Orchestration [0.913755431537592]
Multi-stage experiments in machine learning often involve state-mutating operations acting on models along multiple paths of execution.
We present dagger, a framework to facilitate reproducible and reusable experiment orchestration.
arXiv Detail & Related papers (2020-06-12T21:42:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.